Summary

可视化Interrenal类固醇合成组织及其血管微环境斑马鱼

Published: December 21, 2016
doi:

Summary

在斑马鱼的interrenal腺是哺乳动物的肾上腺的硬骨鱼类的对应。此协议引入了如何执行3-β羟基类固醇脱氢酶(Δ5-4异构酶;3β-HSD)的酶活性测定法,其检测在显影斑马鱼分化类固醇合成的细胞。

Abstract

This protocol introduces how to detect differentiated interrenal steroidogenic cells through a simple whole-mount enzymatic activity assay. Identifying differentiated steroidogenic tissues through chromogenic histochemical staining of 3-β-Hydroxysteroid dehydrogenase /Δ5-4 isomerase (3β-Hsd) activity-positive cells is critical for monitoring the morphology and differentiation of adrenocortical and interrenal tissues in mammals and teleosts, respectively. In the zebrafish model, the optical transparency and tissue permeability of the developing embryos and larvae allow for whole-mount staining of 3β-Hsd activity. This staining protocol, as performed on transgenic fluorescent reporter lines marking the developing pronephric and endothelial cells, enables the detection of the steroidogenic interrenal tissue in addition to the kidney and neighboring vasculature. In combination with vibratome sectioning, immunohistochemistry, and confocal microscopy, we can visualize and assay the vascular microenvironment of interrenal steroidogenic tissues. The 3β-Hsd activity assay is essential for studying the cell biology of the zebrafish interrenal gland because to date, no suitable antibody is available for labeling zebrafish steroidogenic cells. Furthermore, this assay is rapid and simple, thus providing a powerful tool for mutant screens targeting adrenal (interrenal) genetic disorders as well as for determining disruption effects of chemicals on steroidogenesis in pharmaceutical or toxicological studies.

Introduction

肾上腺,下丘脑 – 垂体 – 肾上腺轴的重要组成部分,分泌类固醇和类固醇协调平衡和身体应激反应。肾上腺包括外皮层,可分泌类固醇在特定区域的方式,和内髓质,其中合成儿茶酚胺。在硬骨鱼的interrenal腺是在哺乳动物中肾上腺的对应,并且由类固醇合成interrenal和嗜铬细胞,这是分别1-3肾上腺皮质和髓质,功能等价物。已经使用斑马鱼模型进行的研究报告,这两个类固醇和嗜铬细胞谱系是由分子和细胞机制高度类似于那些在哺乳动物1,2-形成。因此,斑马鱼是研究的遗传性疾病,神经内分泌控制和下丘脑 – 垂体 – 肾上腺(interrenal)轴的系统生物学潜在强大的模型。

<p class ="“jove_content”">在肾上腺,3β-HSD催化孕酮从孕烯醇酮,17α羟从17α-hydroxypregnelolone从脱氢4,5-转换,和雄烯二酮。 3β-HSD为生物合成的激素类固醇,即孕酮,糖皮质激素,盐皮质激素,雄激素,和雌激素的所有类重要的。两个人3β-HSD同工酶HSD3B1和HSD3B2差异表达6。 HSD3B1在胎盘和外周组织中表达,而HSD3B2在肾上腺皮质和性腺表达。人类HSD3B1和HSD3B2是斑马鱼HSD3B1,这是在interrenal组织和成人性腺表达的共同的直向同源物;斑马鱼hsd3b2是一个母系基因表达的转录的器官前7消失。在整个安装3β-HSD酶活性测定斑马鱼的方案,通过修改利维的方法发达,■通过米兰描述上八硬骨鱼类8种冰冻切片。因为组织渗透性和显影斑马鱼的光学透明的,整个安装3β-HSD组织化学可成功地用于固定斑马鱼胚胎和幼虫和具体划定分化interrenal组织。

这个敏感和快速的测定法已应用于各种突变体和morphants展示不同类型interrenal dysmorphogenesis的。所述interrenal3β-HSD活性在其中interrenal组织的规范是通过Ff1b转录因子的特定击倒打乱并作为interrenal分化由Ff1b coregulator Prox1的9,10的击倒影响被降低的胚胎不存在。值得注意的是,3β-HSD活性可在重症早期缺陷的突变体进行检测,如独眼针头 ,其中3β-HSD组织化学界定了interrenal细胞迁移是如何影响11。所述interrenal组织的分化不即使在完全不存在的血液和血管损害。因此,内皮源性信号是如何塑造发展interrenal机关可确定12,13。总体而言,此组织化学测定法已被成功地用于在斑马鱼模型学习规范,分化和类固醇合成的细胞的迁移。因此,它应该是一个高效率和为任何遗传或化学屏幕定位肾上腺和interrenal器官障碍的可靠工具。

Protocol

伦理声明:对斑马鱼的所有试验程序都经东海大学的机构动物护理和使用委员会(IRB批准文号101-12),并按照批准的指导方针进行。 1.3β-HSD酶的活性染色股票方案制备反式dehydroandrosterone [10毫克/毫升的二甲亚砜(DMSO)。 制备β-烟酰胺腺嘌呤二核苷酸水合物(1.2毫克/毫升的0.1M磷酸盐缓冲液,pH 7.2)。 准备烟酰胺(维生素B3,50毫克/毫升H 2 O)。 …

Representative Results

要确定如何与pronephric肾小球及新生血管的生成类固醇interrenal组织codevelops中,3β-HSD酶活性测定的双转的Tg(wt1b:GFP)进行LI1;的Tg(kdrl:mCherry)CI5胚胎在34 HPF ( 图1)。在这个阶段,3β-HSD活性阳性类固醇合成组织位于右向中线,并立即尾鳍到pronephric肾小球,而一些类固醇合成细胞开始跨越中线迁移并形成从背视图一个突出边缘?…

Discussion

的3β-HSD活性的信号强度增加了反应过程。 4小时从28 HPF向前阶段反应后,检测所述3β-HSD活性的明确信号。然而,反应的持续时间,需要经验确定,这取决于测定的目的。在染色要求夜间处理的情况下,略微偏蓝的背景往往对样品开发。这个问题可以通过3β-HSD活性染色之前增加注视时间( 例如 ,在在RT 4%PFAT 4小时)来克服。相比之下,overfixation,如固定过夜与RT 4%PFAT,导致了一个非常清…

Disclosures

The authors have nothing to disclose.

Acknowledgements

我们感谢克里斯托夫·恩格勒特教授和Didier Stainier教授送礼的Tg(wt1b:GFP)LI1TG(kdrl:EGFP)S843 株,分别与台湾斑马鱼核心设施提供Tg(kdrl:mCherry)CI5。这项研究是由赠款科技(96-2628-B-029-002-MY3,101-2313-B-029-001,102-2628-B-029-002-MY3台湾省,支持102- 2321-B-400-018)。

Materials

Confocal microscope Carl Zeiss  LSM510 
DMSO Sigma D8418 
Glycerol USB US16374
Hyclone Fetal Calf Serum  GE Healthcare Life Sciences SH30073
Nicotinamide Sigma N0636
β-Nicotinamide adenine dinucleotide hydrate Sigma N1636
4-Nitro blue tetrazolium Promega S380C
Nusieve GTG Lonza 50081
Paraformaldehyde Sigma P6148
Phenylthiourea Sigma  P7629
Phosphate buffered saline Sigma P4417-100Tab
PYREX Spot Plate Corning 7220-85
Reef Salt AZOO AZ28001
trans-Dehydroandrosterone Sigma D4000
Triton X-100 Sigma T8787
Tween 20 Sigma P9416
Vibratome Leica VT1000M

References

  1. Hsu, H. J., Lin, G., Chung, B. C. Parallel early development of zebrafish interrenal glands and pronephros: differential control by wt1 and ff1b. Development. 130, 2107-2116 (2003).
  2. To, T. T., et al. Pituitary-interrenal interaction in zebrafish interrenal organ development. Mol Endocrinol. 21, 472-485 (2007).
  3. Liu, Y. W. Interrenal organogenesis in the zebrafish model. Organogenesis. 3, 44-48 (2007).
  4. Cravioto, M. D., et al. A new inherited variant of the 3 beta-hydroxysteroid dehydrogenase-isomerase deficiency syndrome: evidence for the existence of two isoenzymes. J Clin Endocrinol Metab. 63, 360-367 (1986).
  5. Lachance, Y., et al. Characterization of human 3 beta-hydroxysteroid dehydrogenase/delta 5-delta 4-isomerase gene and its expression in mammalian cells. J Biol Chem. 267, 3551 (1992).
  6. Simard, J., et al. Molecular biology of the 3beta-hydroxysteroid dehydrogenase/delta5-delta4 isomerase gene family. Endocr Rev. 26, 525-582 (2005).
  7. Lin, J. C., et al. Two zebrafish hsd3b genes are distinct in function, expression, and evolution. Endocrinology. 156, 2854-2862 (2015).
  8. Grassi Milano, E., Basari, F., Chimenti, C. Adrenocortical and adrenomedullary homologs in eight species of adult and developing teleosts: morphology, histology, and immunohistochemistry. Gen Comp Endocrinol. 108, 483-496 (1997).
  9. Chai, C., Liu, Y. W., Chan, W. K. Ff1b is required for the development of steroidogenic component of the zebrafish interrenal organ. Dev Biol. 260, 226-244 (2003).
  10. Liu, Y. W., Gao, W., Teh, H. L., Tan, J. H., Chan, W. K. Prox1 is a novel coregulator of Ff1b and is involved in the embryonic development of the zebra fish interrenal primordium. Mol Cell Biol. 23, 7243-7255 (2003).
  11. Chai, C., Liu, Y. W., Chan, W. K. Ff1b is required for the development of steroidogenic component of the zebrafish interrenal organ. Dev. Biol. 260, 226-244 (2003).
  12. Chou, C. W., Zhuo, Y. L., Jiang, Z. Y., Liu, Y. W. The hemodynamically-regulated vascular microenvironment promotes migration of the steroidogenic tissue during its interaction with chromaffin cells in the zebrafish embryo. PLoS One. 9, e107997 (2014).
  13. Liu, Y. W., Guo, L. Endothelium is required for the promotion of interrenal morphogenetic movement during early zebrafish development. Dev Biol. 297, 44-58 (2006).
  14. Jin, S. W., Beis, D., Mitchell, T., Chen, J. N., Stainier, D. Y. Cellular and molecular analyses of vascular tube and lumen formation in zebrafish. Development. 132, 5199-5209 (2005).
  15. Proulx, K., Lu, A., Sumanas, S. Cranial vasculature in zebrafish forms by angioblast cluster-derived angiogenesis. Dev Biol. 348, 34-46 (2010).
  16. Perner, B., Englert, C., Bollig, F. The Wilms tumor genes wt1a and wt1b control different steps during formation of the zebrafish pronephros. Dev Biol. 309, 87-96 (2007).
  17. Chou, C. W., Chiu, C. H., Liu, Y. W. Fibronectin mediates correct positioning of the interrenal organ in zebrafish. Dev Dyn. 242, 432-443 (2013).
  18. Chiu, C. H., Chou, C. W., Takada, S., Liu, Y. W. Development and fibronectin signaling requirements of the zebrafish interrenal vessel. PLoS One. 7, e43040 (2012).
check_url/kr/54820?article_type=t

Play Video

Cite This Article
Chou, C., Lin, J., Hou, H., Liu, Y. Visualizing the Interrenal Steroidogenic Tissue and Its Vascular Microenvironment in Zebrafish. J. Vis. Exp. (118), e54820, doi:10.3791/54820 (2016).

View Video