Summary

Erzeugung von selbstorganisierenden menschlichen Herzorganoiden aus pluripotenten Stammzellen

Published: September 15, 2021
doi:

Summary

Hier beschreiben wir ein Protokoll zur effizienten Herstellung entwicklungsrelevanter menschlicher Herzorganoide (hHOs) unter Verwendung menschlicher pluripotenter Stammzellen durch Selbstorganisation. Das Protokoll beruht auf der sequentiellen Aktivierung von Entwicklungshinweisen und produziert hochkomplexes, funktionell relevantes menschliches Herzgewebe.

Abstract

Die Fähigkeit, die menschliche Herzentwicklung in Gesundheit und Krankheit zu untersuchen, ist durch die Fähigkeit, die Komplexität des menschlichen Herzens in vitro zu modellieren, stark eingeschränkt. Die Entwicklung effizienterer organähnlicher Plattformen, die komplexe In-vivo-Phänotypen wie Organoide und Organe auf einem Chip modellieren können, wird die Fähigkeit verbessern, die Entwicklung und Erkrankung des menschlichen Herzens zu untersuchen. Dieser Artikel beschreibt ein Protokoll zur Erzeugung hochkomplexer menschlicher Herzorganoide (hHOs) durch Selbstorganisation unter Verwendung menschlicher pluripotenter Stammzellen und schrittweise Aktivierung des Entwicklungsweges unter Verwendung von niedermolekularen Inhibitoren. Embryoide Körper (EBs) werden in einer 96-Well-Platte mit runden, extrem niedrigen Befestigungstöpfen erzeugt, was die Suspensionskultur individualisierter Konstrukte erleichtert.

Die EBs werden durch eine dreistufige Wnt-Signalmodulationsstrategie in hHOs differenziert, die eine anfängliche Wnt-Signalwegaktivierung zur Induktion des kardialen Mesodermenschicksals, einen zweiten Schritt der Wnt-Hemmung zur Schaffung definitiver Herzlinien und einen dritten Wnt-Aktivierungsschritt zur Induktion von Proepikardorgangewebe beinhaltet. Diese Schritte, die in einem 96-Well-Format durchgeführt werden, sind hocheffizient, reproduzierbar und produzieren große Mengen an Organoiden pro Lauf. Die Analyse mittels Immunfluoreszenzbildgebung von Tag 3 bis Tag 11 der Differenzierung zeigt erste und zweite Herzfeldspezifikationen und hochkomplexe Gewebe in hHOs an Tag 15, einschließlich Myokardgewebe mit Regionen von atrialen und ventrikulären Kardiomyozyten sowie interne Kammern, die mit Endokardgewebe ausgekleidet sind. Die Organoide weisen auch ein kompliziertes vaskuläres Netzwerk in der gesamten Struktur und eine äußere Auskleidung des epikarden Gewebes auf. Aus funktioneller Sicht schlagen hHOs robust und weisen eine normale Kalziumaktivität auf, wie sie durch Fluo-4-Live-Imaging bestimmt wird. Insgesamt stellt dieses Protokoll eine solide Plattform für In-vitro-Studien in menschlichen organähnlichen Herzgeweben dar.

Introduction

Angeborene Herzfehler (KHK) sind die häufigste Art von angeborenen Defekten beim Menschen und betreffen etwa 1% aller Lebendgeburten1,2,3. Unter den meisten Umständen bleiben die Gründe für KHK unbekannt. Die Fähigkeit, menschliche Herzmodelle im Labor zu erstellen, die dem sich entwickelnden menschlichen Herzen sehr ähnlich sind, stellt einen bedeutenden Schritt nach vorne dar, um die zugrunde liegenden Ursachen von KHK beim Menschen und nicht in Leihtiermodellen direkt zu untersuchen.

Der Inbegriff von im Labor gezüchteten Gewebemodellen sind Organoide, 3D-Zellkonstrukte, die einem Organ ähneln, das für die Zellzusammensetzung und physiologische Funktion von Interesse ist. Organoide werden oft aus Stammzellen oder Vorläuferzellen gewonnen und wurden erfolgreich verwendet, um viele Organe wie Gehirn4,5, Niere6,7, Darm8,9, Lunge10,11, Leber12,13 und Bauchspeicheldrüse zu modellieren14,15 , um nur einige zu nennen. Jüngste Studien haben die Machbarkeit der Herstellung von selbstorganisierenden Herzorganoiden zur Untersuchung der Herzentwicklung in vitro gezeigt. Diese Modelle umfassen die Verwendung von embryonalen Stammzellen der Maus (mESCs) zur Modellierung der frühen Herzentwicklung16,17 bis zur atrioventrikulären Spezifikation18 und humaner pluripotenter Stammzellen (hPS-Zellen) zur Erzeugung von Multikeimschicht-Herz-Endoderm-Organoiden19 und Kammernnieren20 mit hochkomplexer zellulärer Zusammensetzung.

Dieser Beitrag stellt ein neuartiges 3-stufiges WNT-Modulationsprotokoll vor, um hochkomplexe hHOs effizient und kostengünstig zu erzeugen. Organoide werden in 96-Well-Platten erzeugt, was zu einem skalierbaren Hochdurchsatzsystem führt, das leicht automatisiert werden kann. Diese Methode beruht auf der Erstellung von hPSC-Aggregaten und der Auslösung von Entwicklungsschritten der Kardiogenese, einschließlich der Mesoderm- und Herzmesodermbildung, der ersten und zweiten Herzfeldspezifikation, der Proepikardorganbildung und der atrioventrikulären Spezifikation. Nach 15 Tagen der Differenzierung enthalten hHOs alle wichtigen Zelllinien im Herzen, gut definierte innere Kammern, vorhofische und ventrikuläre Kammern und ein vaskuläres Netzwerk im gesamten Organoid. Dieses hochentwickelte und reproduzierbare Herzorganoidsystem ist für die Untersuchung struktureller, funktioneller, molekularer und transkriptomischer Analysen bei der Untersuchung der Herzentwicklung und von Krankheiten sowie des pharmakologischen Screenings geeignet.

Protocol

1. hPSC-Kultur und -Wartung HINWEIS: Die humanen induzierten PSCs (hiPS-Zellen) oder humanen embryonalen Stammzellen (hES-Zellen) müssen nach dem Auftauen für mindestens 2 aufeinanderfolgende Passagen kultiviert werden, bevor sie zur Erzeugung von EBs zur Differenzierung oder weiteren Kryokonservierung verwendet werden. hPS-Zellen werden in PSC-Medium (siehe Materialtabelle) auf Basalmembran-extrazellulären Matrix (BM-ECM)-beschichteten 6-Well-Kulturplatten kultiviert. Wenn S…

Representative Results

Um eine selbstorganisierende hHO in vitro zu erreichen, haben wir die zuvor beschriebenen Differenzierungsprotokolle für die 2D-Monolayer-Differenzierung von Kardiomyozyten21 und epikardialen Zellen22 unter Verwendung von Wnt-Signalwegmodulatoren und für präkardiale 3D-Organoide16 unter Verwendung der Wachstumsfaktoren BMP4 und Activin A modifiziert und kombiniert. wurden die Konzentrationen und Expositionsd…

Discussion

Jüngste Fortschritte bei aus menschlichen Stammzellen gewonnenen Kardiomyozyten und anderen Zellen kardialen Ursprungs wurden verwendet, um die menschliche Herzentwicklung zu modellieren22,24,25 und Krankheit26,27,28 und als Werkzeuge zum Screening von Therapeutika29,30 und tox…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Diese Arbeit wurde vom National Heart, Lung, and Blood Institute der National Institutes of Health unter den Award-Nummern K01HL135464 und R01HL151505 und von der American Heart Association unter der Award-Nummer 19IPLOI34660342 unterstützt. Wir danken dem MSU Advanced Microscopy Core und Dr. William Jackson von der MSU Abteilung für Pharmakologie und Toxikologie für den Zugang zu konfokalen Mikroskopen, dem IQ Microscopy Core und dem MSU Genomics Core für Sequenzierungsdienste. Wir möchten uns auch bei allen Mitgliedern des Aguirre Lab für ihre wertvollen Kommentare und Ratschläge bedanken.

Materials

Antibodies
Alexa Fluor 488 Donkey anti- mouse Invitrogen A-21202 1:200
Alexa Fluor 488 Donkey anti- rabbit Invitrogen A-21206 1:200
Alexa Fluor 594 Donkey anti- mouse Invitrogen A-21203 1:200
Alexa Fluor 594 Donkey anti- rabbit Invitrogen A-21207 1:200
Alexa Fluor 647 Donkey anti- goat Invitrogen A32849 1:200
HAND1 Abcam ab196622 Rabbit; 1:200
HAND2 Abcam ab200040 Rabbit; 1:200
NFAT2 Abcam ab25916 Rabbit; 1:100
PECAM1 DSHB P2B1 Rabbit; 1:50
TNNT2 Abcam ab8295 Mouse; 1:200
THY1 Abcam ab133350 Rabbit; 1:200
TJP1 Invitrogen PA5-19090 Goat; 1:250
VIM Abcam ab11256 Goat; 1:250
WT1 Abcam ab89901 Rabbit; 1:200
Media and Reagents
Accutase Innovative Cell Technologies NC9464543 cell dissociation reagent
Activin A R&D Systems 338AC010
B-27 Supplement (Minus Insulin) Gibco A1895601 insulin-free cell culture supplement
B-27 Supplement Gibco 17504-044 cell culture supplement
BMP-4 Gibco PHC9534
Bovine Serum Albumin Bioworld 50253966
CHIR-99021 Selleck 442310
D-(-)-Fructose Millipore Sigma F0127
DAPI Thermo Scientific 62248 1:1000
Dimethyl Sulfoxide Millipore Sigma D2650
DMEM/F12 Gibco 10566016
Essential 8 Flex Medium Kit Gibco A2858501 pluripotent stem cell (PSC) medium containing 1% penicillin-streptomycin
Fluo4-AM Invitrogen F14201
Glycerol Millipore Sigma G5516
Glycine Millipore Sigma 410225
Matrigel GFR Corning CB40230 Basement membrane extracellular matrix (BM-ECM)
Normal Donkey Serum Millipore Sigma S30-100mL
Paraformaldehyde MP Biomedicals IC15014601 Powder dissolved in PBS Buffer – use at 4%
Penicillin-Streptomycin Gibco 15140122
Phosphate Buffer Solution Gibco 10010049
Phosphate Buffer Solution (10x) Gibco 70011044
Polybead Microspheres Polysciences, Inc. 73155 90 µm
ReLeSR Stem Cell Technologies NC0729236 dissociation reagent for hPSCs
RPMI 1640 Gibco 11875093
Thiazovivin Millipore Sigma SML1045
Triton X-100 Millipore Sigma T8787
Trypan Blue Solution Gibco 1525006
VECTASHIELD Vibrance Antifade Mounting Medium Vector Laboratories H170010
WNT-C59 Selleck NC0710557
기타
1.5 mL Microcentrifuge Tubes Fisher Scientific 02682002
15 mL Falcon Tubes Fisher Scientific 1495970C
2 mL Cryogenic Vials Corning 13-700-500
50 mL Reagent Reservoirs Fisherbrand 13681502
6-Well Flat Bottom Cell Culture Plates Corning 0720083
8 Well chambered cover Glass with #1.5 high performance cover glass Cellvis C8-1.5H-N
96-well Clear Ultra Low Attachment Microplates Costar 07201680
ImageJ NIH Image processing software
Kimwipes Kimberly-Clark Professional 06-666 laboratory wipes
Micro Cover Glass VWR 48393-241 24 x 50 mm No. 1.5
Microscope Slides Fisherbrand 1255015
Moxi Cell Counter Orflo Technologies  MXZ001
Moxi Z Cell Count Cassette – Type M Orflo Technologies MXC001
Multichannel Pipettes Fisherbrand FBE1200300 30-300 µL
Olympus cellVivo Olympus For Caclium Imaging, analysis with Imagej
Sorvall Legend X1 Centrifuge ThermoFisher Scientific 75004261
Thermoshaker ThermoFisher Scientific 13-687-711PM
Top Coat Nail Varish Seche Vite Can purchase from any supermarket

References

  1. Hoffman, J. I. E., Kaplan, S. The incidence of congenital heart disease. Journal of the American College of Cardiology. 39 (12), 1890-1900 (2002).
  2. Wu, W., He, J., Shao, X. Incidence and mortality trend of congenital heart disease at the global, regional, and national level, 1990-2017. 의학. 99 (23), 20593 (2020).
  3. Fahed, A. C., Gelb, B. D., Seidman, J. G., Seidman, C. E. Genetics of congenital heart disease: the glass half empty. Circulation Research. 112 (4), 707-720 (2013).
  4. Lancaster, M. A., et al. Cerebral organoids model human brain development and microcephaly. Nature. 501 (7467), 373-379 (2013).
  5. Mansour, A. A., et al. An in vivo model of functional and vascularized human brain organoids. Nature Biotechnology. 36, 432-441 (2018).
  6. Homan, K. A., et al. Flow-enhanced vascularization and maturation of kidney organoids in vitro. Nature Methods. 16 (3), 255-262 (2019).
  7. Uchimura, K., Wu, H., Yoshimura, Y., Humphreys, B. D. Human pluripotent stem cell-derived kidney organoids with improved collecting duct maturation and injury modeling. Cell Reports. 33 (11), 108514 (2020).
  8. Serra, D., et al. Self-organization and symmetry breaking in intestinal organoid development. Nature. 569, 66-72 (2019).
  9. Mithal, A., et al. Generation of mesenchyme free intestinal organoids from human induced pluripotent stem cells. Nature Communications. 11, 215 (2020).
  10. Porotto, M., et al. Authentic modeling of human respiratory virus infection in human pluripotent stem cell-derived lung organoids. mBio. 10 (3), 00723 (2019).
  11. Dye, B. R., et al. In vitro generation of human pluripotent stem cell derived lung organoids. Elife. 4, 05098 (2015).
  12. Mun, S. J., et al. Generation of expandable human pluripotent stem cell-derived hepatocyte-like liver organoids. Journal of Hepatology. 71 (5), 970-985 (2019).
  13. Vyas, D., et al. Self-assembled liver organoids recapitulate hepatobiliary organogenesis in vitro. Hepatology. 67 (2), 750-761 (2018).
  14. Dossena, M., et al. Standardized GMP-compliant scalable production of human pancreas organoids. Stem Cell Research & Therapy. 11, 94 (2020).
  15. Georgakopoulos, N., et al. Long-term expansion, genomic stability and in vivo safety of adult human pancreas organoids. BMC Developmental Biology. 20 (1), 4 (2020).
  16. Andersen, P., et al. Precardiac organoids form two heart fields via Bmp/Wnt signaling. Nature Communications. 9, 3140 (2018).
  17. Rossi, G., et al. Capturing cardiogenesis in gastruloids. Cell Stem Cell. 28 (2), 230-240 (2021).
  18. Lee, J., et al. In vitro generation of functional murine heart organoids via FGF4 and extracellular matrix. Nature Communications. 11 (1), 4283 (2020).
  19. Drakhlis, L., et al. Human heart-forming organoids recapitulate early heart and foregut development. Nature Biotechnology. 39 (6), 737-746 (2021).
  20. Hofbauer, P., et al. Cardioids reveal self-organizing principles of human cardiogenesis. Cell. 184 (12), 3299-3317 (2021).
  21. Bao, X., et al. Directed differentiation and long-term maintenance of epicardial cells derived from human pluripotent stem cells under fully defined conditions. Nature Protocols. 12 (9), 1890-1900 (2017).
  22. Bao, X., et al. Long-term self-renewing human epicardial cells generated from pluripotent stem cells under defined xeno-free conditions. Nature Biomedical Engineering. 1, 0003 (2016).
  23. Lewis-Israeli, Y., et al. Self-assembling human heart organoids for the modeling of cardiac development and congenital heart disease. Nature Communications. 12, 5142 (2021).
  24. Lian, X., et al. Robust cardiomyocyte differentiation from human pluripotent stem cells via temporal modulation of canonical Wnt signaling. Proceedings of the National Academy of Sciences of the United States of America. 109 (27), 1848-1857 (2012).
  25. Burridge, P. W., Keller, G., Gold, J. D., Wu, J. C. Production of de novo cardiomyocytes: Human pluripotent stem cell differentiation and direct reprogramming. Cell Stem Cell. 10 (1), 16-28 (2012).
  26. Hashem, S. I., et al. Impaired mitophagy facilitates mitochondrial damage in Danon disease. Journal of Molecular and Cellular Cardiology. 108, 86-94 (2017).
  27. Sun, N., et al. Patient-specific induced pluripotent stem cells as a model for familial dilated cardiomyopathy. Science Translational Medicine. 4 (130), (2012).
  28. Stroud, M. J., et al. Luma is not essential for murine cardiac development and function. Cardiovascular Research. 114 (3), 378-388 (2018).
  29. Liang, P., et al. Drug screening using a library of human induced pluripotent stem cell-derived cardiomyocytes reveals disease-specific patterns of cardiotoxicity. Circulation. 127 (16), 1677-1691 (2013).
  30. Mills, R. J., et al. Functional screening in human cardiac organoids reveals a metabolic mechanism for cardiomyocyte cell cycle arrest. Proceedings of the National Academy of Sciences of the United States of America. 114 (40), 8372-8381 (2017).
  31. Braam, S. R., et al. Prediction of drug-induced cardiotoxicity using human embryonic stem cell-derived cardiomyocytes. Stem Cell Research. 4 (2), 107-116 (2010).
  32. Burridge, P. W., et al. Human induced pluripotent stem cell-derived cardiomyocytes recapitulate the predilection of breast cancer patients to doxorubicin-induced cardiotoxicity. Nature Medicine. 22 (5), 547-556 (2016).
  33. Pinto, A. R., et al. Revisiting cardiac cellular composition. Circulation Research. 118 (3), 400-409 (2017).
  34. Bertero, A., et al. Dynamics of genome reorganization during human cardiogenesis reveal an RBM20-dependent splicing factory. Nature Communications. 10 (1), 1538 (2019).
  35. Gilbert, S. F. Lateral plate mesoderm: Heart and Circulatory System. Developmental Biology. 6th edition. , 591-610 (2000).
  36. Richards, D. J., et al. Human cardiac organoids for the modelling of myocardial infarction and drug cardiotoxicity. Nature Biomedical Engineering. 4 (4), 446-462 (2020).
  37. Lewis-Israeli, Y. R., Wasserman, A. H. Heart Organoids and Engineered Heart Tissues: Novel Tools for Modeling Human Cardiac Biology and Disease. Biomolecules. 1277, (2021).

Play Video

Cite This Article
Lewis-Israeli, Y. R., Volmert, B. D., Gabalski, M. A., Huang, A. R., Aguirre, A. Generating Self-Assembling Human Heart Organoids Derived from Pluripotent Stem Cells. J. Vis. Exp. (175), e63097, doi:10.3791/63097 (2021).

View Video