Summary

心肌组织工程生物衍生的注射材料的制备

Published: December 20, 2010
doi:

Summary

准备脱细胞组织注射基质凝胶注入大鼠心肌的方法<em>在体内</em>描述。

Abstract

该协议规定编制的注射细胞外基质(ECM)的心肌组织工程中的应用凝胶的方法。简单地说,是冻干脱细胞组织,精,酶消化,然后带来生理pH值。冻干删除所有从组织的含水量,导致干流脑可分为地面用小磨细粉。铣削后,ECM的粉是用胃蛋白酶消化,以形成一种注射矩阵。调整pH至7.4后,液体基质材料可注射到心肌。以往的定性分析的结果表明,脱细胞心包及心肌组织产生的基质凝胶保留原生的ECM成分,包括不同的蛋白质,肽和粘多糖。由于使用这种材料的组织工程,是体内特性特别有用;在这里,左心室壁内注射执行的方法(LV)的游离壁作为分析宿主反应基质凝胶的手段提出一个小动物模型。获得通过膈肌进入胸腔注射略高于在LV游离壁的心尖。生物衍生支架可以可视化和注射前生物素标记,然后与辣根过氧化物酶标记的neutravidin染色的组织切片,并通过二氨基联苯胺(DAB)染色可视化。注射区域的分析,也可以做组织学和免疫组织化学染色。这样,在先前研究的心包和心肌基质凝胶形成纤维,多孔网络和注射区域内促进血管的形成。

Protocol

1。前处理组织准备使用此协议之前,必须已经脱细胞的组织选择。对于这个例子,新鲜的猪和人类心包样品使用去离子(DI)水和十二烷基硫酸钠(SDS),低渗和高渗漂洗脱细胞。 具体来说,首先在DI水冲洗猪心包30分钟,然后搅拌在1%SDS不断在磷酸盐缓冲液(PBS)为24小时,5小时DI水冲洗。对于人类pericardia,首先在DI水冲洗30分钟,然后搅拌在1%SDS的PBS连续60-65小时,?…

Discussion

这种方法允许代生物衍生,注射用心肌组织工程支架。虽然这些方法最初是为制造和开发在体内试验心肌基质凝胶,并提出与心包基质凝胶中,这种协议可以适应任何组织使用,提供了组织可适当的脱细胞。脱细胞应进行验证使用这些方法之前,基质凝胶中的DNA的存在,可能会造成有害的免疫反应。有多种方式decellularize材料,并有关于这一问题的3,4的书面的几个很好的评价。

Declarações

The authors have nothing to disclose.

Acknowledgements

这项研究是由美国国立卫生研究院主任的新的创新奖励计划,美国国立卫生研究院医学研究路线图的一部分,通过授予数量DP2 – 1 – OD004309 – 01,部分支持。 SBS – N。想感谢美国国家科学基金会研究生研究奖学金。

Materials

Material Name Tipo Company Catalogue Number Comment
Reagents:        
Pepsin   Sigma-Aldrich p6887-1G Lyophilized
Biotin   Thermo Scientific 21217  
Neutravidin-HRP   Thomas Scientific 21130  
Equipment:        
Wiley Mini Mill   Thomas Scientific 3383L10  
Labconco Lyophilizer   Labconco, Inc 7670520  
Surgical supplies:        
Betadine   Purdue Products, L.P. 67618-154-16  
Lactated Ringers Solution   MWI 003966  
KY Jelly   MWI 28658  
Lidocaine, 2%   MWI 17767  
Buprenorphine hydrochloride   Reckitt Benckiser Healthcare (UK) Ltd. 12496-0757-1  
Artificial tear ointment   Fisher NC9860843  
Triple antibiotic ointment   Fisher 19082795  
Isoflurane   MWI 60307-120-25  
Otoscope   MWI 008699  
Stop cock   MWI 006245  
3-0 Vicrile suture   MWI J327H  
5-0 Proline suture   MWI s-1173  
Reverse cutting (RC) needle   Ethicon 8684G  
Microhemostats   Fine Science Tools 13013-14  
Rat tooth microforceps   Fine Science Tools 11084-07  
No. 10 scalpel   Fine Science Tools 10110-01  
Blunt scissors   Fine Science Tools 14108-09  
Sharp, curved scissors   Fine Science Tools 14085-08  
Large, serrated forceps   Fine Science Tools 1106-12  
PE160 suction tubing   BD 427430  
Clippers   MWI 21608  
Skin staples/stapler   Ethicon PRR35  
General supplies:        
Stir plates        
0.1 M HCl        
1 M NaOH        
10x PBS        
1x PBS        
70% Ethanol        
0.1 mL syringes        
10 mL syringe        
Q-tips        
Surgical glue        
Surgical drape        
Towel clamps        
Small hand-held vacuum        

Referências

  1. Seif-Naraghi, S. B., Salvatore, M. A., Magoffin-Schup, P. J., Hu, D. P., Christman, K. L. Design and characterization of an injectable pericardial matrix gel: A potentially autologous scaffold for cardiac tissue engineering. Tissue Engineering. , (2009).
  2. Freytes, D. O., Martin, J., Velankar, S. S., Lee, A. S., Badylak, S. F. Preparation and rheological characterization of a gel form of the porcine urinary bladder matrix. Biomaterials. 29, 1630-1630 (2008).
  3. Gilbert, T. W., Sellaro, T. L., Badylak, S. F. Decellularization of tissues and organs. Biomaterials. 27, 3675-3675 (2006).
  4. Liao, J., Joyce, E. M., Sacks, M. S. Effects of decellularization on the mechanical and structural properties of the porcine aortic valve leaflet. Biomaterials. 29, 1065-1065 (2008).
  5. Singelyn, J. M., DeQuach, J. A., Seif-Naraghi, S. B., Littlefield, R. B., Schup-Magoffin, P. J., Christman, K. L. Naturally derived myocardial matrix as an injectable scaffold for cardiac tissue engineering. Biomaterials. 30, 5409-5409 (2009).
  6. Christman, K. L., Vardanian, A. J., Fang, Q., Sievers, R. E., Fok, H. H., Lee, R. J. Injectable fibrin scaffold improves cell transplant survival, reduces infarct expansion, and induces neovasculature formation in ischemic myocardium. J Am Coll Cardiol. 44, 654-654 (2004).
  7. Christman, K. L., Fok, H. H., Sievers, R. E., Fang, Q., Lee, R. J. Fibrin glue alone and skeletal myoblasts in a fibrin scaffold preserve cardiac function after myocardial infarction. Tissue Eng. 10, 403-410 (2004).
  8. Huang, N. F., Sievers, R. E., Park, J. S., Fang, Q., Li, S., Lee, R. J. A rodent model of myocardial infarction for testing the efficacy of cells and polymers for myocardial reconstruction. Nat Protoc. (1), 1596-1609 (2006).
  9. Ott, H. C., Matthiesen, T. S., Goh, S. K., Black, L. D., Kren, S. M., Netoff, T. I. Perfusion-decellularized matrix: using nature’s platform to engineer a bioartificial heart. Nat Med. 14, 213-221 (2008).
  10. Badylak, S. F. The extracellular matrix as a biologic scaffold material. Biomaterials. 28, 3587-3593 (2007).
check_url/pt/2109?article_type=t

Play Video

Citar este artigo
Seif-Naraghi, S., Singelyn, J., DeQuach, J., Schup-Magoffin, P., Christman, K. Fabrication of Biologically Derived Injectable Materials for Myocardial Tissue Engineering. J. Vis. Exp. (46), e2109, doi:10.3791/2109 (2010).

View Video