Summary

合成与阿司匹林富马酸酯前药的表征抑制NFκB活动和乳腺癌干细胞

Published: January 18, 2017
doi:

Summary

This procedure will demonstrate how we synthesized and characterized the anti-NFκB and anti-cancer stem cell activity of an aspirin-fumarate prodrug.

Abstract

炎症是癌症标志的underlies癌症发病率和推广,并最终发展为转移。因此,加入一种抗炎药物标准癌症团可改善患者的预后。一种这样的药物,阿司匹林(乙酰水杨酸,ASA),已探索用于癌症的化学预防和抗肿瘤活性。除了抑制环氧合酶2 – 前列腺素轴,ASA的抗癌活性也被归因于核因子ĸB(NFĸB)抑制。由于长时间使用ASA可能引起胃肠道毒性,前体药的策略已成功实施。在这个前药设计的ASA的羧酸被掩蔽和附加药效并入。

这个协议描述了我们如何合成的阿司匹林富马酸盐的前药,GTCpFE,并且其特征在于它的NFĸB途径的抑制乳腺癌细胞和癌症的衰减干细胞样正确联系,一个重要的NFĸB依赖性表型。 GTCpFE有效抑制乳腺癌细胞系NFĸB通路而ASA缺乏任何抑制活性,这表明加入富马酸盐向ASA结构显著有助于其活性。此外,GTCpFE示出了通过阻断微球体形成并衰减所述癌症干细胞相关的CD44 + CD24显著抗癌干细胞活性免疫。这些结果建立一个可行的策略开发改进的抗炎药为化学预防和治疗癌症。

Introduction

炎症是肿瘤underlies的多个方面,如发病率和推广,并转移1最终进展的标志。在乳腺癌中,这进一步通过流行病学观察显示,经常使用经典的非类固醇抗炎药阿司匹林(乙酰水杨酸,ASA)与在两个乳腺癌发病率的降低,并转移和复发的风险相关联的支持2,3。 ASA主要是通过抑制环氧合酶-2的活性,这是常常在乳腺癌4,5-上调作用。然而,ASA的抗癌作用,也可以通过抑制异常核因子κB(NFκB)信令6-8介导的。这是重要的,因为一个失调NFκB途径促进肿瘤细胞存活,增殖,迁移,侵入,血管发生和抗治疗9-11。 NFκB途径激活也用于安装临界的免疫应答。因此,对于其中需要延长的NFκB抑制作用抗癌治疗时,必须考虑的有害副作用涉及长效免疫抑制。因此,ASA可以作为一个很好的起点治疗优化。

用于癌症治疗的ASA应用之一限制是对环加氧酶2和NFκB抑制所需的升高的剂量,这是与胃肠道毒性相关联,如溃疡和胃出血12,13。然而,转换成ASA作为酯前体药物,可降低ASA的胃肠毒性。为了进一步增强效价和/或增加功能性,另外的结构元件或辅助药效也可以并入酯前药设计。一个这样的药效加入以增强ASA效力针对NFκB通路是富马酸盐,这是我们先前已经显示出对于NFκB途径抑制14,15重要。

<p class="“jove_content”">我们合成的阿司匹林富马酸药15,GTCpFE,并推测这种杂交分子是安全而对NFκB途径有力。我们测试在乳腺癌细胞中的抗NFκB活动及其阻断乳腺癌干细胞(CSCS)。15,依赖于NFκB信令生存和发展16-21能力。我们发现,GTCpFE兑NFκB途径的效力超过ASA 15被显著改善。此外,GTCpFE块形成微球体和衰减CSC表面标志物CD44 + CD24 免疫,表明GTCpFE能够消灭肿瘤干细胞15。这些结果建立了阿司匹林富马酸前药作为有效抗炎剂也可以定位乳房的CSCs。在乳腺癌治疗而言,GTCpFE可能具有治疗侵略性和致命的疾病的潜力。

Protocol

1.阿司匹林富马酸前药GTCpFE的合成使用塑料柱塞注射器,测量甲醇为0.81毫升(20毫摩尔)和它在水(10毫升)在圆底烧瓶中混合。将烧瓶在冰水浴冷却所得混合物至0℃。添加4-羟基苄基醇(2.48毫克,20毫摩尔),搅拌反应混合物,直到溶液澄清。 通过称量的O- -acetylsalicyloyl氯化物所需量,并在一个单独的烧瓶中它溶解在溶剂中制备的无水甲苯(10ml)中的O- -acetylsalicyloyl?…

Representative Results

在图1中 ,阿司匹林富马酸盐的前药,GTCpFE,其抑制活性的对细胞因子的化学结构诱导乳腺癌细胞NFĸB通路表示。 GTCpFE既抑制NFĸB端点,NFĸB-RE萤光素酶活性( 图1B)和表达NFĸB靶基因,如细胞间粘附分子1(ICAM1),趋化因子CC基序配体2(CCL2),以及肿瘤坏死因子(TNF)( 图1C)在MCF-7乳腺癌细胞。在50%计算出的抑制浓度上的两个端点…

Discussion

In this protocol, we demonstrated the synthesis of an ASA prodrug, GTCpFE, where the fumarate pharmacophore was incorporated to improve the anti-NFĸB activity in breast cancer cells. GTCpFE is an effective NFĸB inhibitor, whereas ASA itself is not, even at much higher concentrations. The fumarate moiety has anti-inflammatory properties as shown by its ability to inhibit NFĸB signaling in a variety of cell lines and tissues14,25-29. The prodrug strategy described herein, is amendable to other mal…

Declarações

The authors have nothing to disclose.

Acknowledgements

This work was supported by grants provided by the National Institutes of Health (NIH), R01 CA200669 to JF and R01 CA121107 to GRJT, and by a postdoctoral fellowship grant from Susan G. Komen for the Cure to IK (PDF12229484).

Materials

RPMI 1640 Red Medium Life Technologies  11875-093 Warm up to 37°C before use
IMEM Corning 10-024-CV Warm up to 37°C before use
DMEM / F12 Medium ThermoFisher 21041-025 Warm up to 37°C before use
MEM NEAA 10mM 100X Life Technologies  11140
Penicillin Streptomycin Life Technologies  15140-122
L-Glutamine 100X Life Technologies  25030-081
Insulin Sigma-Aldrich I-1882
Fetal Bovine Serum  Atlanta Biologicals S11150
Trypsin 2.5% 10X Invitrogen 15090046
Methyl Cellulose Sigma  M0262
B27 Supplement 50X Gibco 17504-044
EGF Gibco PHG0311L
NFκB-RE Luciferase Construct  Clontech  pGL4.32
Renilla Luciferase Construct  Promega pGL4.70
Lipofectamine 2000 ThermoFisher 11668-019
Dual-Luciferase Reporter Assay  Promega 120000032
NanoDrop Spectrophotometer ThermoFisher
Eppendorf Mastercycler  Eppendorf
StepOne Real Time PCR System Thermo Scientific
Eclipse Microscope Nikon
CyAn ADP Analyzer  Beckman Coulter
QCapture Software QImaging
Summit Software Beckman Coulter
GraphPad Software Prism
TRIzol ThermoFisher 15596-018
M-MLV Reverse Transcriptase Invitrogen 28025-013
100 mM dNTP Set Invitrogen 10297-018
Random Hexamers  Invitrogen 48190-011
Fast SYBR Green Master Mix ThermoFisher 4385612
Costar 96W, ultra low attachment  Corning 3474
HBSS, 1X ThermoFisher 14025134
CD44-APC conjugated antibody  BD Pharmingen 560990 Store at 4°C, protect from light
CD24-PE antibody BD Pharmingen 560991 Store at 4°C, protect from light
Recombinant Human TNFα Fisher 210TA100 
CCL2 Primer Forward Sequence AGAATCACCAGCAGCAAGTGTCC
CCL2 Primer Reverse Sequence TCCTGAACCCACTTCTGCTTGG
ICAM1 Primer Reverse Sequence TGACGAAGCCAGAGGTCTCAG
ICAM1 Primer Forward Sequence AGCGTCACCTTGGCTCTAGG
TNF Primer Forward Sequence AAGGGTGACCGACTCAGCG
TNF Primer Reverse Sequence ATCCCAAAGTAGACCTGCCCA
36B4 Primer Forward Sequence GTGTTCGACAATGGCAGCAT
36B4 Primer Reverse Sequence GACACCCTCCAGGAAGCGA
Sodium Hydroxide Sigma-Aldrich S5881-500G
4-Hydroxybenzyl Alcohol Sigma-Aldrich 20806-10G
O-Acetylsalicyloyl Chloride Sigma-Aldrich 165190-5G
Phosphorous Pentoxide Sigma-Aldrich 79610-100G
Ethyl Fumaroyl Chloride Sigma-Aldrich 669695-1G
Sodium Sulfate Sigma-Aldrich 246980-500G
4-Dimethylaminopyridine Sigma-Aldrich 714844-100ML 0.5 M in tetrahydrofuran
Triethylamine Sigma-Aldrich T0886-100ML
Toluene Sigma-Aldrich 244511-100ML
Ethyl Acetate Sigma-Aldrich 270989-100ML
Tetrahydrofuran Sigma-Aldrich 401757-2L
400 MHz FT NMR spectrometer  See Bruker’s Avance User’s Manual, version 000822 for details

Referências

  1. Hanahan, D., Weinberg, R. A. Hallmarks of cancer: the next generation. Cell. 144, 646-674 (2011).
  2. Cuzick, J., et al. Aspirin and non-steroidal anti-inflammatory drugs for cancer prevention: an international consensus statement. Lancet Oncol. 10, 501-507 (2009).
  3. Terry, M. B., et al. Association of frequency and duration of aspirin use and hormone receptor status with breast cancer risk. JAMA. 291, 2433-2440 (2004).
  4. Wang, D., Dubois, R. N. Cyclooxygenase-2: a potential target in breast cancer. Semin Oncol. 31, 64-73 (2004).
  5. Howe, L. R. Inflammation and breast cancer. Cyclooxygenase/prostaglandin signaling and breast cancer. Breast Cancer Res. 9. 9, 210 (2007).
  6. Kopp, E., Ghosh, S. Inhibition of NF-kappa B by sodium salicylate and aspirin. Science. 265, 956-959 (1994).
  7. Yin, M. J., Yamamoto, Y., Gaynor, R. B. The anti-inflammatory agents aspirin and salicylate inhibit the activity of I(kappa)B kinase-beta. Nature. 396, 77-80 (1998).
  8. Pierce, J. W., Read, M. A., Ding, H., Luscinskas, F. W., Collins, T. Salicylates inhibit I kappa B-alpha phosphorylation, endothelial-leukocyte adhesion molecule expression, and neutrophil transmigration. J Immunol. 156, 3961-3969 (1996).
  9. Frasor, J., El-Shennawy, L., Stender, J. D., Kastrati, I. NFkappaB affects estrogen receptor expression and activity in breast cancer through multiple mechanisms. Mol Cell Endocrinol. 418, 235-239 (2014).
  10. Perkins, N. D. The diverse and complex roles of NF-kappaB subunits in cancer. Nat Rev Cancer. 12, 121-132 (2012).
  11. DiDonato, J. A., Mercurio, F., Karin, M. NF-kappaB and the link between inflammation and cancer. Immunol Rev. 246, 379-400 (2012).
  12. Scarpignato, C., Hunt, R. H. Nonsteroidal antiinflammatory drug-related injury to the gastrointestinal tract: clinical picture, pathogenesis, and prevention. Gastroenterol Clin North Am. 39, 433-464 (2010).
  13. Sostres, C., Gargallo, C. J. Gastrointestinal lesions and complications of low-dose aspirin in the gastrointestinal tract. Best Pract Res Clin Gastroenterol. 26, 141-151 (2012).
  14. Kastrati, I., et al. Dimethyl Fumarate Inhibits the Nuclear Factor kappaB Pathway in Breast Cancer Cells by Covalent Modification of p65 Protein. J Biol Chem. 291, 3639-3647 (2016).
  15. Kastrati, I., et al. A novel aspirin prodrug inhibits NFkappaB activity and breast cancer stem cell properties. BMC Cancer. 15, 845 (2015).
  16. Cao, Y., Luo, J. L., Karin, M. IkappaB kinase alpha kinase activity is required for self-renewal of ErbB2/Her2-transformed mammary tumor-initiating cells. Proc Natl Acad Sci U S A. 104, 15852-15857 (2007).
  17. Liu, M., et al. The canonical NF-kappaB pathway governs mammary tumorigenesis in transgenic mice and tumor stem cell expansion. Cancer Res. 70, 10464-10473 (2010).
  18. Korkaya, H., Liu, S., Wicha, M. S. Regulation of cancer stem cells by cytokine networks: attacking cancer’s inflammatory roots. Clin Cancer Res. 17, 6125-6129 (2011).
  19. Hinohara, K., et al. ErbB receptor tyrosine kinase/NF-kappaB signaling controls mammosphere formation in human breast cancer. Proc Natl Acad Sci U S A. 109, 6584-6589 (2012).
  20. Kendellen, M. F., Bradford, J. W., Lawrence, C. L., Clark, K. S., Baldwin, A. S. Canonical and non-canonical NF-kappaB signaling promotes breast cancer tumor-initiating cells. Oncogene. 33, 1297-1305 (2014).
  21. Yamamoto, M., et al. NF-kappaB non-cell-autonomously regulates cancer stem cell populations in the basal-like breast cancer subtype. Nat Commun. 4, 2299 (2013).
  22. Rio, D. C., Ares, M., Hannon, G. J., Nilsen, T. W. Purification of RNA using TRIzol (TRI reagent). Cold Spring Harb Protoc. , (2010).
  23. Frasor, J., et al. Positive cross-talk between estrogen receptor and NF-kappaB in breast cancer. Cancer Res. 69, 8918-8925 (2009).
  24. Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J., Clarke, M. F. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A. 100, 3983-3988 (2003).
  25. Vandermeeren, M., et al. Dimethylfumarate is an inhibitor of cytokine-induced nuclear translocation of NF-kappa B1, but not RelA in normal human dermal fibroblast cells. J Invest Dermatol. 116, 124-130 (2001).
  26. Loewe, R., et al. Dimethylfumarate inhibits TNF-induced nuclear entry of NF-kappa B/p65 in human endothelial cells. J Immunol. 168, 4781-4787 (2002).
  27. Seidel, P., et al. Dimethylfumarate inhibits NF-{kappa}B function at multiple levels to limit airway smooth muscle cell cytokine secretion. Am J Physiol Lung Cell Mol Physiol. 297, L326-L339 (2009).
  28. Wilms, H., et al. Dimethylfumarate inhibits microglial and astrocytic inflammation by suppressing the synthesis of nitric oxide, IL-1beta, TNF-alpha and IL-6 in an in-vitro model of brain inflammation. J Neuroinflammation. 7, 30 (2010).
  29. Peng, H., et al. Dimethyl fumarate inhibits dendritic cell maturation via nuclear factor kappaB (NF-kappaB) and extracellular signal-regulated kinase 1 and 2 (ERK1/2) and mitogen stress-activated kinase 1 (MSK1) signaling. J Biol Chem. 287, 28017-28026 (2012).
  30. Li, H. J., Reinhardt, F., Herschman, H. R., Weinberg, R. A. Cancer-stimulated mesenchymal stem cells create a carcinoma stem cell niche via prostaglandin E2 signaling. Cancer Discov. 2, 840-855 (2012).
  31. Li, X., et al. Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. J Natl Cancer Inst. 100, 672-679 (2008).
  32. Diehn, M., et al. Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature. 458, 780-783 (2009).
  33. Hollier, B. G., Evans, K., Mani, S. A. The epithelial-to-mesenchymal transition and cancer stem cells: a coalition against cancer therapies. J Mammary Gland Biol Neoplasia. 14, 29-43 (2009).
  34. Velasco-Velazquez, M. A., Popov, V. M., Lisanti, M. P., Pestell, R. G. The role of breast cancer stem cells in metastasis and therapeutic implications. Am J Pathol. 179, 2-11 (2011).
  35. Dontu, G., et al. In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev. 17, 1253-1270 (2003).
  36. Charafe-Jauffret, E., et al. Cancer stem cells in breast: current opinion and future challenges. Pathobiology. 75, 75-84 (2008).
  37. Clayton, H., Titley, I., Vivanco, M. Growth and differentiation of progenitor/stem cells derived from the human mammary gland. Exp Cell Res. 297, 444-460 (2004).
  38. Ginestier, C., et al. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell. 1, 555-567 (2007).
  39. Rosen, J. M., Jordan, C. T. The increasing complexity of the cancer stem cell paradigm. Science. 324, 1670-1673 (2009).
  40. Visvader, J. E., Lindeman, G. J. Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer. 8, 755-768 (2008).
check_url/pt/54798?article_type=t

Play Video

Citar este artigo
Kastrati, I., Delgado-Rivera, L., Georgieva, G., Thatcher, G. R. J., Frasor, J. Synthesis and Characterization of an Aspirin-fumarate Prodrug that Inhibits NFκB Activity and Breast Cancer Stem Cells. J. Vis. Exp. (119), e54798, doi:10.3791/54798 (2017).

View Video