Summary

病毒遗传背景明确的神经回路跟踪

Published: October 17, 2012
doi:

Summary

跟踪突触连接的神经元的方法。我们使用TVA特异性的上游电池,探测是否感兴趣的接收的细胞群体突触输入从基因定义的细胞类型。

Abstract

古典方法研究神经回路是相当低的吞吐量。病毒跨突触,特别是伪狂犬(PRV)和狂犬病毒(RABV),,最近水泡性口炎病毒(VSV),学习电路,正变得越来越流行。这些高通量的方法使用顺行或逆行方向的神经元之间传递的病毒。

近日,RABV突触逆行追踪。 ( 图1A)。在这种方法中,糖蛋白(G)的基因被删除从病毒基因组中,仅在目标神经元和补给。感染特异性达到代的嵌合G,ASLV-阿糖蛋白和胞质域的RABV-G(A / RG)的胞外结构域组成,正常RABV-G 1。特别是感染这种嵌合G TVA受体1的表达。该基因编码TVA已经Delivered通过各种方法2-8。 RABV-G感染的TVA表达神经元,RABV可以传输到其他突触连接的神经元在逆行方向的性质,这是交付的TVA受体的G。这种技术标签相对大量的输入(5-10%)2到一个定义的细胞类型,提供了一个采样到一个定义的起动器的细胞类型中的所有的输入。

我们最近修改了这个技术的使用VSV作为一个跨突触示踪9。 VSV有几个好处,包括快速的基因表达。在这里,我们详细介绍了新的病毒跟踪系统,使用VSV有用的探测微型电路与更高的分辨率。在原来的出版策略,由威克沙姆。4和贝尔等人。9许可证标记神经元的任何项目上最初感染TVA-表达细胞,在这里VSV被设计仅传输到电视A-细胞( 图1B)。该病毒是第一个假RABV-G允许感染下游TVA表达神经元的神经元。这个第一群细胞感染后,病毒发布只能感染TVA-表达细胞。由于跨突触的病毒传播是有限的TVA-细胞的自定义类型的细胞连接的情况下,存在可以被探索和高分辨率。这些实验是在图2中所示的实验流程图。在这里,我们展示一个模型电路,在小鼠视网膜的方向选择性。我们考察爆无长突细胞(SACS)的连通性视网膜神经节细胞(RGC)。

Protocol

1。使病毒从cDNA恢复的VSV的cDNA使用牛痘-T7系统10 前一天进行实验,分割成60毫米菜含有DMEM + 10%FBS BsrT7细胞。每道菜的种子2E6细胞。 BsrT7细胞来源于BHK21,或幼仓鼠肾细胞。 暖用1mM镁和1mM氯化钙的PBS至37℃。 获取一个小等分vTF7-3,表达T7聚合酶的牛痘病毒,和解冻至室温。 vTF7-3是一种传染性的牛痘病毒表达T7聚合酶11,并应使用仅在生物安全级别2遏制。这种表…

Discussion

使用病毒来研究神经回路是一个相对较高的吞吐量,连接神经元的分析方法。但是,生成,VSV和RABV病毒颗粒是不平凡的。虽然提供了上面列出的用于从cDNA拯救病毒的协议,它仍然是一个低概率事件。水平的每一个的N,P和L的质粒中需要被精确地调整,需要做的工作,以确保病毒救援和许多试验和复制。将一个完整的VSV基因组RNA的核苷酸颗粒的形成是一个低概率事件,因此可能需要多次尝试。这?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

我们想感谢肖恩·惠兰与拯救重组VSV变种的协助,以及技术援助的Didem的戈兹贝达和Ryan Chrenek为。这项工作是由霍华德休斯医学研究所(CLC),NS068012-01(KTB)。

Materials

Reagent Company Catalogue number  
      Tissue Culture
Baby Hamster Kidney (BSRT7) cells available upon request    
vaccinia (vTF7-3) available upon request    
pN, pP, pl plasmids available upon request    
Calcium Chloride Sigma C1016  
Magnesium Chloride Sigma M8266  
HEK 293T cells Open Biosystems HCL4517  
60 mm TC-Treated Culture Dish Corning 430166  
75 cm2 Rectangular Canted Neck Cell Culture Flask with Vent Cap Corning 430641  
Media : DMEM (Dulbecco’s Modified Eagle Medium) Invitrogen 12491-015  
1 M HEPES pH 7.4 Gibo 15630-080  
FBS: Fetal Bovine Serum Gibco 10437-028  
PKS Invitrogen 15140-163  
Lipofectamine 2,000 Transfection Reagent Invitrogen 11668-019  
Syringe: 5 ml Luer-Lock syringe Sigma Z248010-1PAK  
Syringe Filters Nalgene 190-2520  
PEI: High Potency Linear PEI Polysciences 23966  
      Viral Centrifugation
Corning 150 ml Tube Top Vacuum Filter System, 0.45 μm Pore Corning 430314  
Thinwall, Ultra-Clear, 38.5 ml, 25 x 89 mm ultracentrifuge tubes Beckman-Coulter 344058  
Ultracentrifuge Beckman-Coulter optima XL-80K  
SW28 Ultracentrifuge rotor Beckman-Coulter 342207  
      Mouse Injection
Capillary micropipets Drummond 5-000-2005  
Stereotax Narishige SR-5M  
Micromanipulator Narishige SM-15  
Ump injector World Precision Instruments Sys-Micro4  
Four channel microcontroller World Precision Instruments UMP3  
M.TXB Bench Motor with C.EMX-1 Dial Control, 115 Volt Foredom M.TXB-EM  
H.10 Handpiece, Quick Change Foredom H.10  
Step Drill, 0.5 mm Foredom A-58005P  
Microelectrode holder World Precision Instruments MEH2S  
Ketamine Henry Schein 995-2949  
Xylazine Henry Schein 4015809TV  
Buprenorphine Henry Schein 1118217  
1 ml syringe Becton-Dickinson 309628  
30 gauge injection needle Becton-Dickinson 305106  
Protective Ophthalmic Ointment Doctors Foster and Smith 9N-014748  
Ethanol Sigma 493511  
Iodine Sigma PVP1  
      Surgery and Dissection tools
Scissors Fine Science Tools 91402-12  
Standard Forceps Fine Science Tools 11000-12  
Fine Forceps Fine Science Tools 11255-20  
Vannas spring scissors Fine Science Tools 15000-00  
Scalpel handle Fine Science Tools 10003-12  
Scalpel blades Fine Science Tools 10015-00  
Sutures Robbins Instruments 20.SK640  
      Dissection and antibody staining
paraformaldehyde Sigma P6148  
Phosphate Buffered Saline Sigma P4417  
Triton X-100 Sigma T9284  
Donkey Serum Jackson Immunoresearch 017-000-121  
      Antibodies
Antibodies millipore AB144P  
Anti-gfp Abcam ab13970  
Donkey anti-chicken Dylight 488 Jackson immunoresearch 703-545-155  
Donkey anti-chicken Alexa Fluor 647 Jackson immunoresearch 705-605-147  
DAPI Invitrogen D1306  
      Tissue mounting
Superfrost plus microscope slides Fisher 12-550-100  
Cover glass 22 x 22, 0 thickness Electron Microscopy Sciences 72198-10  
Silicone elastomer Rogers Corp HT-6220  
Clear nail polish Electron Microscopy Sciences 72180  
Prolong Gold antifade reagent Invitrogen P36930  

References

  1. Wickersham, I. R. Monosynaptic restriction of transsynaptic tracing from single, genetically targeted neurons. Neuron. 53, 639-647 (2007).
  2. Marshel, J. H., Mori, T., Nielsen, K. J., Callaway, E. M. Targeting single neuronal networks for gene expression and cell labeling in vivo. Neuron. 67, 562-574 (2010).
  3. Wall, N. R., Wickersham, I. R., Cetin, A., De La Parra, M., Callaway, E. M. Monosynaptic circuit tracing in vivo through Cre-dependent targeting and complementation of modified rabies virus. Proc. Natl. Acad. Sci. U.S.A. 107, 21848-21853 (2010).
  4. Wickersham, I. R. Monosynaptic restriction of transsynaptic tracing from single, genetically targeted neurons. Neuron. 53, 639-647 (2007).
  5. Yonehara, K. Spatially asymmetric reorganization of inhibition establishes a motion-sensitive circuit. Nature. 469, 407-410 (2011).
  6. Stepien, A. E., Tripodi, M., Arber, S. Monosynaptic rabies virus reveals premotor network organization and synaptic specificity of cholinergic partition cells. Neuron. 68, 456-472 (2010).
  7. Beier, K. T., Samson, M. E. S., Matsuda, T., Cepko, C. L. Conditional expression of the TVA receptor allows clonal analysis of descendents from Cre-expressing progenitor cells. Dev. Biol. 353, 309-320 (2011).
  8. Seidler, B. A Cre-loxP-based mouse model for conditional somatic gene expression and knockdown in vivo by using avian retroviral vectors. Proc. Natl. Acad. Sci. U.S.A. 105, 10137-10142 (2008).
  9. Beier, K. T. Anterograde or retrograde transsynaptic labeling of CNS neurons with vesicular stomatitis virus vectors. Proc. Natl. Acad. Sci. U.S.A. 108, 15414-15419 (2011).
  10. Whelan, S. P., Ball, L. A., Barr, J. N., Wertz, G. T. Efficient recovery of infectious vesicular stomatitis virus entirely from cDNA clones. Proc. Natl. Acad. Sci. U.S.A. 92, 8388-8392 (1995).
  11. Fuerst, T. R., Niles, E. G., Studier, F. W., Moss, B. Eukaryotic Transient-Expression System Based on Recombinant Vaccinia Virus That Synthesizes Bacteriophage T7 RNA Polymerase. PNAS. 83, 8122-8126 (1986).
  12. Young, J. A., Bates, P., Varmus, H. E. Isolation of a chicken gene that confers susceptibility to infection by subgroup A avian leukosis and sarcoma viruses. J. Virol. 67, 1811-1816 (1993).
  13. Madisen, L. A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat Neurosci. 13, 133-140 (2010).
  14. Franklin, K., Paxinos, G. . The Mouse Brain in Stereotaxic Coordinates. , (1997).
  15. van den Pol, A. N. Viral strategies for studying the brain, including a replication-restricted self-amplifying delta-G vesicular stomatis virus that rapidly expresses transgenes in brain and can generate a multicolor golgi-like expression. J. Comp. Neurol. 516, 456-481 (2009).
check_url/4253?article_type=t

Play Video

Cite This Article
Beier, K., Cepko, C. Viral Tracing of Genetically Defined Neural Circuitry. J. Vis. Exp. (68), e4253, doi:10.3791/4253 (2012).

View Video