Summary

开发,扩展,<em>在体内</em>从人类胚胎干细胞(hESCs)监测人类NK细胞和诱导多能干细胞(iPS细胞)

Published: April 23, 2013
doi:

Summary

本协议描述的发展,扩张和来自人类胚胎干细胞和iPS细胞的NK细胞在体内成像。

Abstract

我们提出一个方法推导自然杀伤(NK)细胞未分化的人类胚胎干细胞和iPS细胞使用馈线的方法。此方法产生高水平的NK细胞培养4周后,可以进行进一步的人工抗原呈递细胞的2 – 日志扩展。在本系统中开发的人类胚胎干细胞和iPS细胞来源的NK细胞有成熟的表型和功能。基因修改的NK细胞的大量生产适用于两个基本机理以及抗肿瘤的研究。萤火虫荧光素酶在人类胚胎干细胞衍生的NK细胞可表达一种非侵入性的方法,遵循NK细胞植入,分布和功能。我们还描述了一种双重成像计划,允许独立的监控两种不同的细胞群,以更清楚地描述他们在体内的相互作用。推导,膨胀, 在体内成像和双此方法提供了可靠的制造NK细胞的方法,其EVALU这是必要的,以改善当前NK细胞过继疗法通报BULLETIN。

Introduction

是未分化的人类胚胎干细胞(hESCs)和诱导多能干细胞(iPS细胞),多能干细胞能无限的自我更新和多谱系分化。人胚胎干细胞已被成功地分化为成熟和功能的子集的每一个胚层,包括细胞的造血系统1-3。自然杀伤(NK)细胞是先天免疫系统的淋巴细胞,可以是来自于人类胚胎干细胞形成胚状体(胚体)4,5或共培养基质细胞系1,2,6-8。 NK细胞具有抗病毒和抗肿瘤能力,有可能可以有效对抗广泛的恶性肿瘤,因为它们不执行需要事先抗原刺激的效应子功能。因此,NK细胞的人类胚胎干细胞衍生的是一个有吸引力的免疫细胞来源。此外,推导出人类胚胎干细胞的NK细胞基因提供了一个适合的系统来研究正常发展<EM>的体外。

因为它们提供了基因听话的系统,人类胚胎干细胞来源的NK细胞可以通过实验修饰以表达荧光和生物发光记者提供一个最佳的模型来研究在体外体内的 NK细胞的效应子功能。人类胚胎干细胞衍生的NK细胞具有活性,对一系列目标,包括艾滋病毒,白血病(K562)和其他类型的癌症7,8。然而,能够有效地获得足够的NK细胞能够治疗患者仍然是一个重要的障碍的临床翻译是,在较小的程度,广泛的临床前体内研究的NK细胞的发育和抗癌功能的限制。在这里,我们使用一个自旋EB的方法来获得4,5,10从人类胚胎干细胞的造血祖细胞。之后11天的胚体的自旋转移到NK细胞培养28天,带或不带供料器。 NK细胞培养基中,4周后,NK细胞被转修饰以表达膜结合的白细胞介素21(IL-21),作为人工抗原呈递细胞(AAPCS)与K562细胞共培养sferred。适应扩张外周血NK细胞,使用这些人工装甲运兵车11,12的协议,我们能够扩大NK细胞日志,同时保留一个成熟的表型和细胞毒性的能力。

这个过程的发展和扩张提供了足够的人类胚胎干细胞衍生的NK细胞在体内表征广泛。对于体内研究,我们能够以非侵入性监测长期植入,注入萤火虫荧光素酶的动力学表达(涨落+),人类胚胎干细胞来源的NK细胞,利用生物发光成像。此外,我们都能够按照使用双,生物发光或荧光成像计划的与肿瘤细胞的NK细胞间的相互作用。我们先前的研究组利用生物发光成像的抗肿瘤模型遵循肿瘤进展和CLEarance涨落+ K562细胞体内 7。现在,我们的人类胚胎干细胞表达萤火虫荧光素酶13,14工程,我们可以遵循的分布和贩运NK细胞对K562肿瘤细胞表达最近特征的荧光蛋白,turboFP650 15。我们选择了这个双报告系统,以同时跟随两个淋巴细胞增殖( 图1)的。大多数双成像机型已经双荧光素酶系统,但这些系统可以在技术上具有挑战性,由于腔肠素的交付要求,表达最海肾Gaussia的荧光素酶记者16-18所需的基板。荧光报告在体外的许多细胞系和构造允许简单的监控,但由于组织和皮毛的自体荧光和许多共同的发射光谱之间的重叠部分在体内成像了有限的成功mmonly使用荧光记者,包括红色荧光蛋白,绿色荧光蛋白,和TdTomato 15,19。这种担忧鼓励发展的远红荧光蛋白,它可以更好的组织渗透率和较高的特定信号比背景15,19。 TurboFP650,在本系统中所示的荧光蛋白,远红移,克服了许多与成像的荧光蛋白在活的动物所涉及的问题。

这种发展和扩大是来自于人类胚胎干细胞的NK细胞的方法,使我们能够进一步表征人类胚胎干细胞来源的NK细胞, 在体外体内 ,这是必要的,以便更好地了解NK细胞功能和临床上重要的,以改善电流NK细胞过继疗法。它也适合于iPS细胞衍生的NK细胞的推导和扩展。双荧光和生物发光成像方案广泛适用于系统以外的抗肿瘤模型中,我们已经在这里显示。

Protocol

1。适应TrypLE自旋EB培养的人类胚胎干细胞或iPS细胞 TrypLE的初始分解效果最好,如果胶原酶传代培养的ES / IPS殖民地都比较小。开始ES / IPS的人群应该是细胞通过不超过4-5天前。 TrypLE通道前4-5天开始,通过ES细胞的密度,使细胞〜70%汇合,在4天的时间。使用常规ES媒体文化的TrypLE传代的胚胎干细胞。在这里,我们使用人类胚胎干细胞的稳定结构( 材料表 )荧光素酶报告修改。…

Representative Results

造血祖细胞的产生使用自旋EB方法允许最佳的NK细胞从人胚胎干细胞和iPS细胞的发展。这表现在图2中,11天自旋胚体含有高百分比的祖细胞表达CD34,CD45,CD43,和CD31。高水平的CD34和CD45 NK条件允许直接传输,无需进行排序或支持基质细胞。如果有不理想的自旋EB分化,它是建议基质细胞,例如EL08-1D2中使用的二次NK条件。自旋胚体培养4周后产生大量的NK细胞(约1-2×10 6细胞的24孔…

Discussion

人类胚胎干细胞是一个理想的平台,研究不同的细胞类型,并保持卓越的潜力为临床翻译。我们使用一个定义,自旋EB的方法,对造血祖细胞分化的人类胚胎干细胞/ iPS细胞。的自旋EB的方法已经取得了一致的推导造血祖细胞和NK细胞的分化,变化仍然存在跨细胞系的分化效率,并可能需要进行修改,以生成其他的造血细胞谱系。虽然比较结果可以得到从其他EB或基质培养方法的推导,这个系统是无…

Disclosures

The authors have nothing to disclose.

Acknowledgements

笔者想感谢梅林达·Hexum为我们的实验室内旋EB协议开始。我们想感谢实验室的其他成员,包括劳拉E. Bendzick,迈克尔Lepley,和他们这项工作的技术援助的振亚镍。作者还要感谢布拉德·泰勒在他的专家技术咨询卡尺生命科学。

Materials

Name of Reagent Company Catalog Number Comments
      Materials
      Media
      BPEL media for Spin EB generation
Iscove’s Modified Dulbecco’s Medium (IMDM) Fisher Scientific SH3022801  
F-12 Nutrient Mixture w/ Glutamax I Invitrogen 31765035  
Bovine Serum Albumin (BSA) Sigma-Aldrich A3311 Commercially available BSA can be cytotoxic to ES cells. Deionizing the solution can reduce the potential for cytotoxicity.
Poly(vinyl alcohol) Sigma-Aldrich P8136  
Linoleic Acid Sigma-Aldrich L1012  
Linolenic Acid Sigma-Aldrich L2376  
Synthechol 500X solution Sigma-Aldrich S5442  
a-monothioglycerol (a-MTG) Sigma-Aldrich S5442  
Protein-free hybridoma mix II Invitrogen 12040077  
Ascorbic Acid 2-phosphate Sigma-Aldrich A8960  
Glutamax I Invitrogen 35050061  
Insulin, Transferrin, Selenium 100X solution (ITS) Invitrogen 41400-045  
Pen-Strep Invitrogen 15140122  
      NK Differentiation Media
Dubecco’s Modified Eagle Medium (DMEM) Invitrogen 11965-118  
F-12 Media Invitrogen CX30315  
15% Human AB serum Valley Biomed HP1022HI  
5 ng/ml Sodium Selenite Sigma-Aldrich S5261  
50 uM ethanolamine Sigma-Aldrich E9508  
20 ng/ml ascorbic acid Sigma-Aldrich A8960  
25 uM 2-mercaptoethanol (BME) Gibco 21985  
2 mM L-glutamine Gibco CX30310  
1% Pen-Strep Invitrogen 15140122  
      Cytokines
      (all cytokines used fresh from frozen aliquots)
SCF PeproTech, Inc. 300-07 40 ng/ml in BPEL media; 20 ng/ml in NK medium). As noted by the Elefanty protocol, and as we discovered with a bad lot of BMP4, there can be lot differences with cytokines in regards to hematopoietic differentiation.Especially if buying cytokines in bulk, obtain a sample of the lot to test prior to purchase. Compare head-to-head with old lot.
rhBMP-4 R &D Systems 314-BP 20 ng/ml in BPEL media
rhVEGF R&D Systems 293-VE 20 ng/ml in BPEL media
IL-2 PeproTech, Inc. 200-02 1 x 105 U/ml given to mice after NK cell injection; 50 U/ml used in NK cell expansion protocol
IL-15 PeproTech, Inc. 200-15 10 ng/ml given to mice after NK cell injection (first 7 days only)
IL-3 PeproTech, Inc. 200-03 5 ng/ml in NK media
IL-7 PeproTech, Inc. 200-07 20 ng/ml in NK media
Flt-3-Ligand PeproTech, Inc. 300-19 10 ng/ml in NK media
      In vivo Imaging
D-Luciferin Sodium Salt Gold BioTechnology Lucna-500  
TurboFP650 plasmid Evrogen, Moscow, Russia FP731 Subcloned into a Sleeping Beauty transposon based plasmid driven by the mCAGs promoter. Cells were then sorted on their expression of turboFP650 by FACS. Cells and plasmids can be obtained from our lab.
      Equipment
IVIS Spectrum Imaging System Caliper Life Sciences    
      Cells
Membrane bound IL-21 expressing artificial antigen presenting cells MD Anderson, Houston, TX   contact: Dean A. Lee. http://www.jove.com/video/2540/expansion-purification-functional-assessment-human-peripheral-blood
Firefly luciferase expressing hESCs University of Minnesota, Minneapolis, MN   contact: Dan S. Kaufman . H9 cells modified with a Sleeping Beauty transposon based method (references 13 and 14). Expression of firefly luciferase is driven by the mCAGGS promoter. Following the firefly luciferase gene is an IRES element at the 5′ end of a GFP:zeocin fusion construct.
TurboFP650 expressing K562 cells University of Minnesota, Minneapolis, MN   contact: Dan S. Kaufman. Description under plasmid comments section

Materials Table.

References

  1. Keller, G. M. In vitro differentiation of embryonic stem cells. Current Opinion in Cell Biology. 7, 862-869 (1995).
  2. Kaufman, D. S. Hematopoietic colony-forming cells derived from human embryonic stem cells. Proceedings of the National Academy of Sciences. 98, 10716-10721 (2001).
  3. Kaufman, D. S. Toward clinical therapies using hematopoietic cells derived from human pluripotent stem cells. Blood. 114, 3513-3523 (2009).
  4. Ng, E. S., Davis, R., Stanley, E. G., Elefanty, A. G. A protocol describing the use of a recombinant protein-based, animal product-free medium (APEL) for human embryonic stem cell differentiation as spin embryoid bodies. Nature Protocols. 3, 768-776 (2008).
  5. Ng, E. S., Davis, R. P., Azzola, L., Stanley, E. G., Elefanty, A. G. Forced aggregation of defined numbers of human embryonic stem cells into embryoid bodies fosters robust, reproducible hematopoietic differentiation. Blood. 106, 1601-1603 (2005).
  6. Vodyanik, M. A., Bork, J. A., Thomson, J. A., Slukvin, I. I. Human embryonic stem cell-derived CD34+ cells: efficient production in the coculture with OP9 stromal cells and analysis of lymphohematopoietic potential. Blood. 105, 617-626 (2005).
  7. Woll, P. S., et al. Human embryonic stem cells differentiate into a homogeneous population of natural killer cells with potent in vivo antitumor activity. Blood. 113, 6094-6101 (2009).
  8. Woll, P. S., Martin, C. H., Miller, J. S., Kaufman, D. S. Human embryonic stem cell-derived NK cells acquire functional receptors and cytolytic activity. Journal of Immunology. 175, 5095-5103 (2005).
  9. Ni, Z., et al. Human Pluripotent Stem Cells Produce Natural Killer Cells That Mediate Anti-HIV-1 Activity by Utilizing Diverse Cellular Mechanisms. Journal of Virology. 85, 43-50 (2011).
  10. Ng, E. S., Davis, R. P., Hatzistavrou, T., Stanley, E. G., Elefanty, A. G. Directed differentiation of human embryonic stem cells as spin embryoid bodies and a description of the hematopoietic blast colony forming assay. Current Protocols in Stem Cell Biology. Chapter 1, Unit 1D.3 (2008).
  11. Denman, C. J., et al. Membrane-Bound IL-21 Promotes Sustained Ex Vivo Proliferation of Human Natural Killer Cells. PLoS ONE. 7, e30264 (2012).
  12. Somanchi, S. S., Senyukov, V. V., Denman, C. J., Lee, D. A. Expansion, Purification, and Functional Assessment of Human Peripheral Blood NK Cells. J. Vis. Exp. (48), e2540 (2011).
  13. Tian, X., et al. Bioluminescent imaging demonstrates that transplanted human embryonic stem cell-derived CD34+ cells preferentially develop into endothelial cells. Stem Cells. 27, 2675-2685 (2009).
  14. Wilber, A., et al. Efficient and stable transgene expression in human embryonic stem cells using transposon-mediated gene transfer. Stem Cells. 25, 2919-2927 (2007).
  15. Shcherbo, D., et al. Near-infrared fluorescent proteins. Nature Methods. 7, 827-829 (2010).
  16. Nguyen, V. T., Morange, M., Bensaude, O. Firefly luciferase luminescence assays using scintillation counters for quantitation in transfected mammalian cells. Analytical Biochemistry. 171, 404-408 (1988).
  17. Sadikot, R. T., Blackwell, T. S. Bioluminescence Imaging. Proceedings of the American Thoracic Society. 2, 537-540 (2005).
  18. Santos, E. B., et al. Sensitive in vivo imaging of T cells using a membrane-bound Gaussia princeps luciferase. Nature Medicine. 15, 338-344 (2009).
  19. Chudakov, D. M., Matz, M. V., Lukyanov, S., Lukyanov, K. A. Fluorescent Proteins and Their Applications in Imaging Living Cells and Tissues. Physiological Reviews. 90, 1103-1163 (2010).
  20. Knorr, D. A., Bock, A., Brentjens, R. J., Kaufman, D. S. Engineered Human Embryonic Stem Cell-Derived Lymphocytes to Study In Vivo Trafficking and Immunotherapy. Stem Cells Dev. 28, 28 (2013).
  21. Germain, R. N., Robey, E. A., Cahalan, M. D. A Decade of Imaging Cellular Motility and Interaction Dynamics in the Immune System. Science. 336, 1676-1681 (2012).
check_url/50337?article_type=t

Play Video

Cite This Article
Bock, A. M., Knorr, D., Kaufman, D. S. Development, Expansion, and In vivo Monitoring of Human NK Cells from Human Embryonic Stem Cells (hESCs) and Induced Pluripotent Stem Cells (iPSCs). J. Vis. Exp. (74), e50337, doi:10.3791/50337 (2013).

View Video