Summary

小胶质细胞的小脑颗粒细胞使用L-亮氨酸甲酯选择性耗尽

Published: July 07, 2015
doi:

Summary

Microglia can influence neurons and other glia in culture by various non-cell autonomous mechanisms. Here, we present a protocol to selectively deplete microglia from primary neuronal cultures. This method has the potential to elucidate the role of microglial-neuronal interactions, with implications for neurodegenerative conditions where neuroinflammation is a hallmark feature.

Abstract

Microglia, the resident immunocompetent cells of the CNS, play multifaceted roles in modulating and controlling neuronal function, as well as mediating innate immunity. Primary rodent cell culture models have greatly advanced our understanding of neuronal-glial interactions, but only recently have methods to specifically eliminate microglia from mixed cultures been utilized. One such technique – described here – is the use of L-leucine methyl ester, a lysomotropic agent that is internalized by macrophages and microglia, wherein it causes lysosomal disruption and subsequent apoptosis13,14. Experiments using L-leucine methyl ester have the power to identify the contribution of microglia to the surrounding cellular environment under diverse culture conditions. Using a protocol optimized in our laboratory, we describe how to eliminate microglia from P5 rodent cerebellar granule cell culture. This approach allows one to assess the relative impact of microglia on experimental data, as well as determine whether microglia are playing a neuroprotective or neurotoxic role in culture models of neurological conditions, such as stroke, Alzheimer’s or Parkinson’s disease.

Introduction

人类大脑包含估计为85十亿神经元和另一个85十亿非神经元细胞,包括神经胶质1。对于过去的100年神经科学家主要集中在神经元细胞群的大部分时间里,相信神经胶质细胞比被动的支持细胞为神经元提供结构支持更小 – “神经胶质细胞”翻译成英语的,因此希腊词源“胶水”。然而,最近它已成为日益明显的是,神经细胞 – 胶质细胞的相互作用可能是更为基本的神经生物学,神经生理学和许多神经变性疾病的发生和进展的基本方面。小脑颗粒细胞(信用担保公司),最丰富的神经元的同质人口在人的大脑,支配小脑和弥补90%以上,其细胞成分。因此,这些细胞已被广泛用于在体外作为吨的模型系统他研究神经发育,功能和病理2-6。

不过,CGC文化还含有小胶质细胞和神经胶质细胞等在争议显著的比例。其结果是,CGC数据推定显示直接神经元对不同的细胞治疗可能实际上出现 – 在部分或全部 – 从在培养相邻神经胶质的间接二次响应。为了评估这一点,我们选择的除去从CGC神经元培养小胶质用的L-亮氨酸甲酯(LME)的助剂。 LME是一个lysomotropic剂原本用于选择性地破坏巨噬细胞7,并一直使用也选择性地从神经元,星形胶质细胞和神经胶质混合培养8,9,10消耗小胶质细胞。 LME由巨噬细胞和小胶质细胞内化,其中它引起溶酶体破裂和随后的细胞凋亡13,14。巨噬细胞和小胶质细胞是典型丰富的溶酶体,使他们成为particula暴露于LME治疗RLY脆弱。该协议提供了一个功能强大,简单易用的方式,以确定小胶质细胞在利用CGC和其他神经元/胶质细胞培养系统实验的贡献。

Protocol

本文所述的所有实验均按照英国动物(科学程序)1986年法进行的。 1.准备仪器,文化传媒,和菜名准备两个不锈钢实验室解剖剪刀和两个不锈钢镊子实验室。高压灭菌器的所有仪器和地方文化引擎盖O / N在紫外光(UV)光灭菌。 使500毫升最小必需培养基(MEM)培养基(10%胎牛血清[FBS],20mM的氯化钾,25mM的碳酸氢钠 ,30mM的D-葡萄糖,2mM的L-谷氨酰胺,10…

Representative Results

这种技术的以选择性地消除从CGC和/或混合培养物的小胶质细胞的能力依赖于研究者的准确识别,并从它们的周围细胞分化的小胶质细胞的后续能力。这可以使用一个小胶质特异性细胞制造者,如植物凝集素B4中实现, 如图1所示。作为表现出在图2中,没有观察到改变星形细胞和神经元密度和形貌进行记录,对于各主要的治疗组。重要的是,观察到的神经元或星形细胞形态…

Discussion

最重要的步骤,以确保成功选择性消除小胶质细胞来自CGC和/或混合培养物有:1)保持无菌,健康的文化CGC; 2)过滤灭菌的含LME介质并返回该溶液至pH 7.4; 3)保持保留CGC媒体和LME-含37媒体 °C,这样可以避免热冲击;和4)迅速工作,以减少单元保持在培养箱外的时间。

我们使用25毫米LME从我们的CGC文化耗尽胶质 – 以前在我们的实验室进行了优化的浓度。尽管如此,一些?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

This research was support by an Aims2Cure, UK and a UCL Impact Award Ph.D. studentship to JMP and an MRC Capacity Building Ph.D. studentship in Dementia to JMP.

Materials

Forceps  Sigma-Aldrich F4142 The curved end facilitates removal of the cerebellum 
Micro-dissecting scissors Sigma-Aldrich S3146 Straight, sharp point facilitates rodent P4-7 dissection 
L-leucine methyl ester hydrochloride Sigma-Aldrich 7517-19-3
EBSS solution  Sigma-Aldrich E7510-500 ml
Poly-D-lysine Sigma-Aldrich 27964-99-4 Coat coverslips 1 day before use 
Bovine serum albumin (BSA) Sigma-Aldrich A9418
Phosphate buffered saline (PBS) Sigma-Aldrich P4417
DNase Sigma-Aldrich D5025
Soybean trypsin inhibitor  Sigma-Aldrich T6414
Mouse anti-ED1 antibody  Abcam ab31630

References

  1. Herculano-Houzel, S. The remarkable, yet not extraordinary, human brain as a scaled-up primate brain and its associated cost. PNAS. 26 (109), 10661-10668 (2012).
  2. Evans, G. J., &Pocock, J. M. Modulation of neurotransmitter release by dihydropyridine-sensitive calcium channels involves tyrosine phosphorylation. Eur J Neuro. 11 (1), 279-292 (1999).
  3. Kingham, P. J., Cuzner, M. L., Pocock, J. M. Apoptotic pathways mobilized in microglia and neurones as a consequence of chromogranin A-induced microglial activation. J Neurochem. 73 (2), 538-547 (1999).
  4. Contestabile, A. Cerebellar granule cells as a model to study mechanisms of neuronal apoptosis or survival in vivo and in vitro. Cerebellum. 1 (1), 41-55 (2002).
  5. Kramer, D., Minichiello, L. Cell culture of primary cerebellar granule cells. Methods Mol Biol. 633, 233-239 (2010).
  6. Facci, L., Skaper, S. D. Culture of rat cerebellar granule neurons and application to identify neuroprotective agents. Methods Mol Biol. 846, 23-37 (2012).
  7. Thiele, D. L., Kurosaka, M., Lipsky, P. E. Phenotype of the accessory cell necessary for mitogen-stimulated T and B cell responses in human peripheral blood: delineation by its sensitivity to the lysosomotropic agent, L-leucine methyl ester. J Immunology. 131 (5), 2282-2290 (1983).
  8. Giulian, D., Vaca, K., Corpuz, M. Brain glia release factors with opposing actions upon neuronal survival. J Neurosci. 13 (1), 29-37 (1993).
  9. Guillemin, G., et al. Obtention and characterization of primary astrocyte and microglial cultures from adult monkey brains. J Neurosci Res. 49 (5), 576-591 (1997).
  10. Hewett, J. A., Hewett SJ, ., Winkler, S., Pfeiffer SE, . Inducible nitric oxide synthase expression in cultures enriched for mature oligodendrocytes is due to microglia. J Neurosci Res. 56 (2), 189-198 (1999).
  11. Jebelli, J., Hooper, C., &Pocock, J. M. Microglial p53 activation is detrimental to neuronal sysnapses during activaton-induced inflammation: implications for neurodegeneration. Neurosci Lett. 7 (583), 92-97 (2014).
  12. Frade, J., et al. Glutamate induces release of glutathione from cultured rats astrocytes – a possible neuroprotective mechanism. J Neurochem. 105 (4), 1144-1152 (2008).
  13. Hamby, M. E., Uliasz, T. F., Hewett, S. J., Hewett, J. A. Characterization of an improved procedure for the removal of microglia from confluent monolayers of primary astrocytes. J Neurosci Methods. 150 (1), 128-137 (2006).
  14. Morgan, S. C., Taylor, D. L., Pocock, J. M. Microglia release activators of neuronal proliferation mediated by activation of mitogen-activated protein kinase, phosphatidylinositol-3-kinase/Akt and delta-Notch signalling cascades. J Neurochem. 90 (1), 89-101 (2004).
  15. Crocker, S. J., Frausto, R. F., Whitton, J. L., Milner, R. A novel method to establish microglia-free astrocyte cultures: comparison of matrix metalloproteinase expression profiles in pure cultures of astrocytes and microglia. Glia. 56 (11), 1187-1198 (2008).
  16. Kumamaru, H., et al. Liposomal clodronate selectively eliminates microglia from primary astrocyte cultures. J Neuroinflamm. 9, 116 (2012).
check_url/52983?article_type=t

Play Video

Cite This Article
Jebelli, J., Piers, T., Pocock, J. Selective Depletion of Microglia from Cerebellar Granule Cell Cultures Using L-leucine Methyl Ester. J. Vis. Exp. (101), e52983, doi:10.3791/52983 (2015).

View Video