Summary

Monitoraggio del Astrocyte reattività e proliferazione in Vitro in condizioni ischemiche-come

Published: October 21, 2017
doi:

Summary

Ictus ischemico è un evento complesso in cui il contributo specifico degli astrociti nella regione colpite del cervello esposto alla privazione di ossigeno glucosio (OGD) è difficile da studiare. Questo articolo introduce una metodologia per ottenere gli astrociti isolati e studiare la loro reattività e la proliferazione in condizioni OGD.

Abstract

Ictus ischemico è una lesione complessa del cervello causata da un trombo o embolo che ostruisce il flusso di sangue alle parti del cervello. Questo porta alla privazione di ossigeno e glucosio, che causa guasto di energia e morte neuronale. Dopo un insulto di colpo ischemico, astrociti diventano reattivi e proliferano attorno al sito di lesione, come si sviluppa. In questo scenario, è difficile studiare il contributo specifico dei astrocytes per la regione del cervello esposto ad ischemia. Di conseguenza, questo articolo introduce una metodologia per studiare la reattività Astrocita primario e proliferazione sotto un modello in vitro di un ambiente di ischemia-simile, chiamato privazione di ossigeno glucosio (OGD). Gli astrociti sono stati isolati da 1-4 giorno-vecchi ratti neonatali e il numero di cellule astrocytic aspecifica è stata valutata utilizzando Astrocita marcatore selettivo della proteina acida fibrillare gliale (GFAP) e macchiatura nucleare. Il periodo in cui gli astrociti sono sottoposti alla condizione OGD può essere personalizzato, così come la percentuale di ossigeno a che sono esposti. Questa flessibilità permette agli scienziati di caratterizzare la durata della condizione ischemica-come in diversi gruppi di cellule in vitro. Questo articolo discute i tempi di consegna di OGD che inducono la reattività di astrociti, morfologia ipertrofica e proliferazione come misurato dall’immunofluorescenza usando proliferando Cell Nuclear Antigen (PCNA). Oltre alla proliferazione, astrociti subiscono l’energia e lo sforzo ossidativo e rispondono agli OGD attraverso il rilascio di fattori solubili nel mezzo delle cellule. Questo mezzo possa essere raccolte e utilizzato per analizzare gli effetti delle molecole rilasciate dai astrocytes in colture neuronali primarie senza interazione cellula–cellula. In sintesi, questo modello della coltura cellulare primaria in modo efficiente consente di comprendere il ruolo degli astrociti isolati dopo un danno.

Introduction

Ictus è definito come “un’acuta disfunzione neurologica di origine vascolare con sviluppo rapido o improvviso dei sintomi e dei segni, corrispondenti alla partecipazione delle zone focali del cervello”1,2. Ci sono due tipi di ictus: ischemico ed emorragico. Quando la disfunzione vascolare è causata da un aneurisma o un malfunzionamento arterovenoso, accompagnato da indebolimento con posteriore rottura di un’arteria, questo è definito ictus emorragico3 che, nella maggior parte dei casi conduce alla morte. Quando un trombo o un embolo ostacola il flusso di sangue, causando una temporanea privazione di ossigeno e glucosio per una regione del cervello, si chiama colpo ischemico4. Inadempimento di nutrire le cellule intorno alla zona interessata o core ischemico conduce ad un squilibrio omeostatico e metabolico, disfunzione energetica, morte neuronale e l’infiammazione5, che può indurre una disabilità permanente per pazienti6.

L’ictus ischemico è una ferita multifattoriale che coinvolge diversi tipi di cellule che reagiscono ed esercitano i loro effetti in diversi momenti. Molte interazioni creano un ambiente difficile per studiare il comportamento delle singole celle. Così, come noi a studiare il contributo di un tipo specifico delle cellule in un ambiente così complesso? Un modello accettato in vitro di ischemia consiste di esponendo le cellule a deprivazione di ossigeno e glucosio (OGD), per un certo periodo, seguito dal restauro delle cellule ad un ambiente normoxic. Questo sistema simula un colpo ischemico seguito da riperfusione di sangue. In questo metodo, le cellule o i tessuti sono esposti a una media glucosio-liberi in un ambiente che ha eliminato l’inceppo di ossigeno, utilizzando una camera ipossica specializzata. Il tempo di incubazione di OGD può variare da pochi minuti fino a 24 h, a seconda l’ipotesi che vuole essere testato. Studi hanno dimostrato che in base ai tempi di OGD e normoxic ambiente, fenotipi specifici del colpo (cioè, acuta o subcronica) può essere realizzato. Astrociti isolati, esposti a OGD con restauro posteriore a condizioni di normossia, è un modello di cellulare ben studiato per simulare la corsa in vitro7. Utilizzando OGD è possibile svelare i meccanismi molecolari indipendenti delle cellule isolate in un ambiente di colpo-come.

Come aumenta la nostra conoscenza della biologia di astrociti, è diventato evidente che sono cruciali per mantenere la sinapsi ed il sostenimento di riparazione, di sviluppo e plasticità neurale8. In condizioni normali, gli astrociti rilasciare e rispondere alle citochine, chemochine, fattori di crescita e gliotrasmettitori, mantenendo l’equilibrio metabolico e l’omeostasi nelle sinapsi5,9. In neuroinflammation acuta, come l’ictus ischemico, queste cellule possono diventano reattive, mostrare una lungo termine sovraespressione della proteina acida fibrillare gliale (GFAP) e mostrano ipertrofia nella loro morfologia5,10, 11 , 12. come si sviluppa l’infarto ischemico, l’omeostasi fornito da astrociti diventa affetto, per quanto riguarda l’assorbimento normale del glutammato, metabolismo energetico, scambio di molecole attive e antiossidante attività13.

Gli astrociti riattivati proliferano intorno al tessuto di infarto mentre leucociti migrano verso la zona leso14. Proliferazione astrocytic può essere misurata usando gli indicatori come antigene nucleare delle cellule di proliferazione (PCNA), Ki67 e bromodeossiuridina (BrdU)15. Questa risposta proliferativa viene generata in un modo dipendente dal tempo e aiuta a formare la cicatrice gliale, matrice di astrociti reattivi irreversibilmente lungo il parenchima del sito danneggiato dopo un infortunio9. Una delle funzioni iniziali di questa cicatrice è di limitare lo stravaso delle cellule immuni da questa zona. Tuttavia, gli studi hanno mostrato che la cicatrice diventa un impedimento fisico per gli assoni estendere, come essi rilasciare molecole inibendo la crescita assonale e creare una barriera fisica che impedisce che gli assoni che si estende intorno alla zona danneggiata16. Tuttavia, ci è prove scientifiche che dimostrano che dopo una lesione del midollo spinale, completamente prevenire la formazione di cicatrice gliale può alterare la rigenerazione di assoni17. Così, il contesto in cui viene misurata la risposta astrocytic specifica, deve essere considerato al momento il quadro della ferita ha studiato.

La metodologia presentata può essere applicata per studiare la funzione individualizzata dei astrocytes dopo privazione di ossigeno del glucosio e può essere modificato a seconda delle domande che lo sperimentatore vuole rispondere. Ad esempio, oltre il cambiamento morfologico e gli indicatori espressi in tempi diversi di OGD, i surnatanti dagli astrociti esposti a OGD possono essere analizzati ulteriormente per identificare fattori solubili rilasciati da queste cellule, o usato come un media condizionati per valutare la effetto in altre cellule del cervello. Questo approccio permette studi sulla reattività di astrociti che potrebbe portare alla delucidazione dei fattori che regolano e modulano la loro risposta in uno scenario di ictus ischemico.

Protocol

ratti postnatali (Sprague Dawley) 1-4 giorni vecchi vengono utilizzate per isolare cortecce. Il metodo dell’eutanasia è la decapitazione, come approvato dalla linee guida NIH. 1. preparazione degli strumenti e materiali per la chirurgia strumenti di sterilizzare in autoclave (temperatura: 121 ° c, pressione: 15 psi, tempo: 30 minuti) utilizzando una scatola d’acciaio o un istante di sigillamento del sacchetto di sterilizzazione. Vedi materiali nella Tabella materiali</str…

Representative Results

Una delle preoccupazioni principali della cultura astrocytic primario è la presenza di altre cellule come i neuroni, oligodendrociti, fibroblasti e microglia. Nella Figura 1, cellule isolate da cortecce di ratto avevano preparato cambia ogni 3 giorni e sono stati o non trattata o trattata con aggiunto LME per 1 h. 24 h più successivamente, le cellule immunostained per GFAP e controcolorati con DAPI. Le cellule non trattate hanno mostrato una media di 39% no…

Discussion

Questo protocollo descrive l’isolamento degli astrociti da cortecce di ratto. In questo metodo, è fondamentale per ridurre la contaminazione con altri tipi cellulari come microglia, oligodendrociti e fibroblasti. Per ridurre il numero di microglia, si possono adottare diverse misure: cambiando la media, agitazione orbitale e trattamenti chimici. Una volta che la purezza di cultura è confermata dall’immunofluorescenza usando gli indicatori cellulari selettivi o per i contaminanti più prominenti di cella, gli esperiment…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Gli autori vogliono ringraziare Paola López Pieraldi per l’assistenza tecnica. A.H.M è grato per le borse di studio 8G12MD007600 e U54-NS083924 supportato questa pubblicazione. Ringraziamo NIH-NIMHD-G12-MD007583 borsa di studio per il supporto della struttura. D.E.R.A. è grata per la borsa di studio fornito da NIHNIGMS-R25GM110513. Siamo grati per l’uso della zona di strumentazione comune e concedere l’aiuto del dottor Priscila Sanabria per l’uso della struttura Imaging ottico del programma RCMI da G12MD007583. Inoltre, vogliamo ringraziare Jose Padilla per il suo ruolo eccezionale in riprese e montaggio il protocollo visual.

Materials

Instruments for Surgery – Step 1
Operating scissor 5.5” Roboz Company RS-6812 Tools used to decapitate the rats.
Curved forceps 7”  Roboz Company RS-5271 Holds the skin of the rat while the skull is removed.
Micro-dissecting scissors 4”  Roboz Company RS-5882 Cuts both the skin and skull of the rat.
Micro-dissecting forceps 4” angled, fine sharp  Roboz Company RS-5095 Holds the skin of the rat while the skull is removed.
Micro-dissecting forceps 4” slightly curved 0.8 Roboz Company RS-5135 Tool used to separate cortices.
Micro-dissecting tweezers Roboz Company RS-4972 Peels brain meninges.
Dissection microscope Olympus SZX16 Important for removing the meninge from the cortices.
DMEM Preparation – step 2
Dulbecco’s Modified Eagle’s Medium (DMEM) GibCo. Company 11995-065 Supports the growth of cells.
Sodium bicarbonate Sigma-Aldrich Company S7277 Supplement for the cell culture media.
Fetal bovine serum (FBS) GibCo. Company 10437-010 Serum-supplement for the cell culture.
Penicillin-Streptomycin  GibCo. Company 15140-148 Inhibits the growth of bacterias in the cell culture.
Filter System 1L with 0.22um pore Corning 431098
Astrocyte culture – step 3
Serological pipets 5mL VWR 89130-896 To pipette DMEM to containers with cells.
Serological pipets 10mL VWR 89130-898 To pipette DMEM to containers with cells.
Serological pipets 25mL VWR 89130-900 To pipette DMEM to containers with cells.
Centrifuge conical tube 15mL Santa Cruz Biotechnology sc-200250
Safe-lock tube 1.5mL Eppendorf 022363204
Barrier Tips 200 uL Santa Cruz Biotechnology sc-201725
Barrier Tips 1 mL Santa Cruz Biotechnology sc-201727
Biohazard Orange Bag 14 x 19" VWR 14220-048
60mm petri dishes Falcon 351007
Sterile gauze pads Honeywell Safety 89133-086
Stomacher 80 Biomaster Sewar Lab System 030010019 Triturate the brain tissue.
Stomacher 80 Blender Sterile Bags Sewar Lab System BA6040 Sterile bag for the stomacher cell homogenizer.
Beaker 400mL Pyrex 1000
Sterile cell dissociation sieve, mesh #60  Sigma-Aldrich Company S1020 To obtain a uniform single cell suspension.
Sterile cell dissociation sieve, mesh #100 Sigma-Aldrich Company S3895 To obtain a uniform single cell suspension.
Invert phase microscope Nikon Eclypse Ti-S Verify cells for contamination or abnormal cell growth.
75cm2 sterile flasks Falcon 353136
Multi-well plate Falcon 353046
Micro cover glasses (coverslips), 18mm, round VWR 48380-046
Bright-Line hemacytometer Sigma-Aldrich Company Z359629
Pasteur pipettes Fisher Scientific 13-678-20D
Ethyl alcohol  Sigma-Aldrich Company E7023
L-leucine methyl ester hydrochloride 98% (LME) Sigma-Aldrich Company L1002 Promotes the elimination of microglia cells in the primary cortical astrocyte cultutre.
Cytosine β-D-arabinofuranoside (Ara-C) Sigma-Aldrich Company C1768
Poly-D-Lysine Hydrobromide, mol wt 70,000-150,000 Sigma-Aldrich Company P0899
Trypsin/EDTA GibCo. Company 15400-054
Trypan Blue Sigma-Aldrich Company T8154
Phosphate buffer saline (PBS) tablets Calbiochem 524650
Sterile Water Sigma-Aldrich Company W3500
 OGD Medium Preparation – step 5
Centrifuge conical tube 50 mL VWR 89039-658
Dulbecco’s modified Eagle’s medium-free glucose Sigma-Aldrich Company D5030 Supports the growth of cells.
Sodium bicarbonate Sigma-Aldrich Company S7277 Supplement for the cell culture media.
Penicillin-Streptomycin  GibCo. Company 15140-148 Inhibits the growth of bacterias in the cell culture.
200mM  L-glutamine  GibCo. Company 25030-081 Amino acid that supplements the growth of cells.
Phospahet buffer saline (PBS) tablets Calbiochem 524650
Filter System 50mL with 0.22um pore Corning 430320
Centrifuge conical tube 50 mL VWR 89039-658
Single Flow Meter  Billups-Rothenberg SMF3001 Measure gas flow in oxygen purge.
Hypoxia Incubator Chamber  StemCell 27310 Generates a hypoxic environment for the cell culture.
Traceable Dissolved Oxygen Meter VWR 21800-022
95% N2/ 5% CO2 Gas Mixture Linde Purges the environment of oxygen.
primary astrocyte immunofluorescence – step 6
Phosphate buffer saline (PBS) tablets Calbiochem 524650
Formaline Solution Neutral Buffer 10% Sigma-Aldrich HT501128 Solution used to fix cells.
Methanol  Fisher A4544 Solution used to fix cells.
Non-ionic surfactant (Triton X-100) Sigma-Aldrich T8787
Fetal bovine serum (FBS) GibCo. Company 10437-010 Serum-supplement for the cell culture.
Anti-NeuN Cell Signaling 24307 Detects mature neurons, serves to validate the astrocytic culture.
Anti-PCNA Cell Signaling 2586 Detects proliferating cells.
Propidium Iodide (PI) Sigma-Aldrich Company P4170 Apoptosis staining.
Anti-Olig1 Abcam AB68105 Detects mature oligodendrocytes.
Anti-Iba1+ Wako 016-20001 Detects microglial cells.
Anti-GFAP Conjugated with Cy3  Sigma-Aldrich Company C9205 Detects reactive astrocytes in the treated cells.
Alexa Fluor 488 Molecular Probe Life Technology A1101 Anti-Mouse Secondary Antibody
Alexa Fluor 555 Molecular Probe Life Technology A21428 Anti-Rabbit Secondary Antibody
4’,6’-diamidino-2-phenylindole (DAPI) Sigma-Aldrich Company D9542 Nuclear staining
Confocal microscope Olympus

References

  1. Goldstein, L. B., Bertels, C., Davis, J. N. Interrater reliability of the NIH stroke scale. Arch Neurol. 46 (6), 660-662 (1989).
  2. Hinkle, J. L., Guanci, M. M. Acute ischemic stroke review. J Neurosci Nurs. 39 (5), 285-293 (2007).
  3. Kassner, A., Merali, Z. Assessment of Blood-Brain Barrier Disruption in Stroke. Stroke. 46 (11), 3310-3315 (2015).
  4. Moskowitz, M. A., Lo, E. H., Iadecola, C. The science of stroke: mechanisms in search of treatments. Neuron. 67 (2), 181-198 (2010).
  5. Ben Haim, L., Carrillo-de Sauvage, M. A., Ceyzeriat, K., Escartin, C. Elusive roles for reactive astrocytes in neurodegenerative diseases. Front Cell Neurosci. 9, 278 (2015).
  6. Broderick, J., et al. Guidelines for the Management of Spontaneous Intracerebral Hemorrhage in Adults 2007 Update: A Guideline From the American Heart Association/American Stroke Association Stroke Council, High Blood Pressure Research Council, and the Quality of Care and Outcomes in Research Interdisciplinary Working Group: The American Academy of Neurology affirms the value of this guideline as an educational tool for neurologists. Stroke. 38 (6), 2001-2023 (2007).
  7. Wang, R., et al. Oxygen-glucose deprivation induced glial scar-like change in astrocytes. PLoS One. 7 (5), e37574 (2012).
  8. Sofroniew, M. V. Reactive astrocytes in neural repair and protection. The Neuroscientist. 11 (5), 400-407 (2005).
  9. Sofroniew, M. V., Vinters, H. V. Astrocytes: biology and pathology. Acta neuropathologica. 119 (1), 7-35 (2010).
  10. Souza, D. G., Bellaver, B., Souza, D. O., Quincozes-Santos, A. Characterization of adult rat astrocyte cultures. PLoS One. 8 (3), e60282 (2013).
  11. Puschmann, T. B., et al. HB-EGF affects astrocyte morphology, proliferation, differentiation, and the expression of intermediate filament proteins. J Neurochem. 128 (6), 878-889 (2014).
  12. Robinson, C., Apgar, C., Shapiro, L. A. Astrocyte Hypertrophy Contributes to Aberrant Neurogenesis after Traumatic Brain Injury. Neural Plast. , 1347987 (2016).
  13. Brekke, E., Berger, H. R., Wideroe, M., Sonnewald, U., Morken, T. S. Glucose and Intermediary Metabolism and Astrocyte-Neuron Interactions Following Neonatal Hypoxia-Ischemia in Rat. Neurochem Res. , (2016).
  14. Cekanaviciute, E., et al. Astrocytic transforming growth factor-beta signaling reduces subacute neuroinflammation after stroke in mice. Glia. 62 (8), 1227-1240 (2014).
  15. Zhu, Z., et al. Inhibiting cell cycle progression reduces reactive astrogliosis initiated by scratch injury in vitro and by cerebral ischemia in vivo. Glia. 55 (5), 546-558 (2007).
  16. Bovolenta, P., Wandosell, F., Nieto-Sampedro, M. Neurite outgrowth over resting and reactive astrocytes. Restor Neurol Neurosci. 2 (4), 221-228 (1991).
  17. Anderson, M. A., et al. Astrocyte scar formation aids central nervous system axon regeneration. Nature. 532 (7598), 195-200 (2016).
  18. Hao, C., Richardson, A., Fedoroff, S. Macrophage-like cells originate from neuroepithelium in culture: characterization and properties of the macrophage-like cells. Int J Dev Neurosci. 9 (1), 1-14 (1991).
  19. Saura, J. Microglial cells in astroglial cultures: a cautionary note. J Neuroinflammation. 4, 26 (2007).
  20. Giulian, D., Baker, T. J. Characterization of ameboid microglia isolated from developing mammalian brain. J Neurosci. 6 (8), 2163-2178 (1986).
  21. Schildge, S., Bohrer, C., Beck, K., Schachtrup, C. Isolation and culture of mouse cortical astrocytes. J Vis Exp. (71), (2013).
  22. Armstrong, R. C. Isolation and characterization of immature oligodendrocyte lineage cells. Methods. 16 (3), 282-292 (1998).
  23. McCarthy, K. D., de Vellis, J. Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue. J Cell Biol. 85 (3), 890-902 (1980).
  24. Pont-Lezica, L., Colasse, S., Bessis, A. Depletion of microglia from primary cellular cultures. Methods Mol Biol. 1041, 55-61 (2013).
  25. Svensson, M., Aldskogius, H. Synaptic density of axotomized hypoglossal motorneurons following pharmacological blockade of the microglial cell proliferation. Exp Neurol. 120 (1), 123-131 (1993).
  26. Wong, V. K., Shapourifar-Tehrani, S., Kitada, S., Choo, P. H., Lee, D. A. Inhibition of rabbit ocular fibroblast proliferation by 5-fluorouracil and cytosine arabinoside. J Ocul Pharmacol. 7 (1), 27-39 (1991).
  27. Nakatsuji, Y., Miller, R. H. Density dependent modulation of cell cycle protein expression in astrocytes. J Neurosci Res. 66 (3), 487-496 (2001).
  28. Reeves, J. P. Accumulation of amino acids by lysosomes incubated with amino acid methyl esters. J Biol Chem. 254 (18), 8914-8921 (1979).
  29. Thiele, D. L., Kurosaka, M., Lipsky, P. E. Phenotype of the accessory cell necessary for mitogen-stimulated T and B cell responses in human peripheral blood: delineation by its sensitivity to the lysosomotropic agent, L-leucine methyl ester. J Immunol. 131 (5), 2282-2290 (1983).
  30. Hamby, M. E., Uliasz, T. F., Hewett, S. J., Hewett, J. A. Characterization of an improved procedure for the removal of microglia from confluent monolayers of primary astrocytes. J Neurosci Methods. 150 (1), 128-137 (2006).
  31. Corvalan, V., Cole, R., de Vellis, J., Hagiwara, S. Neuronal modulation of calcium channel activity in cultured rat astrocytes. Proc Natl Acad Sci U S A. 87 (11), 4345-4348 (1990).
  32. Butler, I. B., Schoonen, M. A., Rickard, D. T. Removal of dissolved oxygen from water: A comparison of four common techniques. Talanta. 41 (2), 211-215 (1994).
  33. Tasca, C. I., Dal-Cim, T., Cimarosti, H. In vitro oxygen-glucose deprivation to study ischemic cell death. Methods Mol Biol. 1254, 197-210 (2015).
  34. Wu, D., Yotnda, P. Induction and testing of hypoxia in cell culture. J Vis Exp. (54), (2011).
  35. Rivera-Aponte, D., et al. Hyperglycemia reduces functional expression of astrocytic Kir4. 1 channels and glial glutamate uptake. Neuroscience. 310, 216-223 (2015).
  36. Berger, R., Garnier, Y., Pfeiffer, D., Jensen, A. Lipopolysaccharides do not alter metabolic disturbances in hippocampal slices of fetal guinea pigs after oxygen-glucose deprivation. Pediatric research. 48 (4), 531-535 (2000).
  37. Anderson, T. R., Jarvis, C. R., Biedermann, A. J., Molnar, C., Andrew, R. D. Blocking the anoxic depolarization protects without functional compromise following simulated stroke in cortical brain slices. Journal of neurophysiology. 93 (2), 963-979 (2005).
  38. Jarvis, C. R., Anderson, T. R., Andrew, R. D. Anoxic depolarization mediates acute damage independent of glutamate in neocortical brain slices. Cerebral Cortex. 11 (3), 249-259 (2001).

Play Video

Cite This Article
Ferrer-Acosta, Y., Gonzalez-Vega, M. N., Rivera-Aponte, D. E., Martinez-Jimenez, S. M., Martins, A. H. Monitoring Astrocyte Reactivity and Proliferation in Vitro Under Ischemic-Like Conditions. J. Vis. Exp. (128), e55108, doi:10.3791/55108 (2017).

View Video