Summary

免疫细胞衍生细胞外囊泡的表征及研究功能对细胞环境的影响

Published: June 02, 2020
doi:

Summary

本报告强调了从微胶质或血液巨噬细胞分离细胞外囊泡(EV)的时间顺序要求。微胶质衍生的EV被评价为神经外生长的调节器,而血液巨噬细胞衍生的EV在体外检测中控制C6胶质瘤细胞入侵时被研究。目标是更好地了解这些EV功能作为免疫中介器在特定微环境中。

Abstract

中枢神经系统(CNS)的神经炎状态在生理和病理状况中起着关键作用。微胶质,大脑中的常驻免疫细胞,有时渗入骨髓衍生的巨噬细胞(BMDM),调节其微环境在中枢神经系统的炎症特征。现在人们承认,免疫细胞的细胞外囊泡(EV)种群充当免疫中介。因此,它们的收集和隔离对于识别其内容,但也评估其对受体细胞的生物影响也很重要。本数据强调了从微胶质细胞或血液巨噬细胞(包括超中心化和大小排除色谱(SEC)步骤中分离EV的时间顺序要求。非靶向蛋白组分析允许将蛋白质特征验证为EV标记,并特征为生物活性EV含量。微胶质衍生的EV也功能地用于神经元的主要培养,以评估它们作为中微子生长中免疫中介的重要性。结果表明,微胶质衍生的EV有助于促进体外微子的生长。同时,血液巨噬细胞衍生的EV在C6胶质瘤细胞的球体培养物中作为免疫中介器,结果表明这些EV在体外控制胶质瘤细胞入侵。本报告强调了评估EV介导免疫细胞功能的可能性,但也了解这种通信的分子基础。这种破译可以促进使用天然囊泡和/或体外制备治疗性囊泡,以模仿中枢神经系统病理学微环境中的免疫特性。

Introduction

许多神经病理学与神经炎症状态有关,这是一种日益被考虑的复杂机制,但由于免疫过程多种多样,并且依赖于细胞环境,因此仍难以理解。事实上,中枢神经系统疾病没有系统地涉及相同的激活信号和免疫细胞群,因此亲炎反应很难作为病理的原因或后果来评价。大脑常驻巨噬细胞称为”微胶质”,似乎在神经和免疫系统之间的接口1。微胶质有一个骨髓起源,从原始造物病期间的蛋黄囊派生,以殖民大脑,而外周巨噬细胞从胎儿肝脏在决定性的造物形成过程中,成为外周巨噬细胞2。微胶质细胞与神经元和神经元衍生的胶质细胞(如星形细胞和寡核糖3)通信。最近的几项研究表明,微胶质在中枢神经系统发育和成人组织平衡过程中,以及与神经退行性疾病44、55相关的炎症状态中,都涉及神经元可塑性。否则,血脑屏障的完整性可能会在其他中枢神经系统疾病中受损。免疫反应,特别是在胶质细胞瘤多肠癌中,不仅由微胶质细胞支持,因为血脑屏障通过血管生成过程和淋巴血管的存在6,77重组。因此,在整个肿瘤依赖性血管生成机制8中,脑肿瘤中出现了一个大的骨髓衍生巨噬细胞(BMDM)。癌细胞对渗透的BMDM有显著影响,导致免疫抑制特性和肿瘤生长9。因此,由于细胞起源和激活信号多种多样免疫细胞与其大脑微环境之间的通信是难以理解的。因此,在生理条件下,对免疫细胞相关分子特征的功能进行鉴定是很有趣的。在这方面,通过释放细胞外囊泡(EV),可以研究免疫细胞和细胞微环境之间的细胞-细胞通信。

在调节健康及病理状况的,免疫功能方面,EV正研究得越来越多。可以考虑两个种群,外体和微囊。它们呈现不同的生物发生和大小范围。外泌体是直径±30~150nm的囊泡,由内体系统生成,在多孔体(MVB)与等离子膜融合期间分泌。微囊直径约为100~1000纳米,由细胞等离子膜14外萌芽产生。由于外泌体与微囊歧视仍难以根据大小和分子模式来实现,因此本文仅使用”EV”一词。CNS的EV相关通信代表了一种祖先机制,因为研究表明它们与无脊椎动物物种(包括线虫、昆虫或阴叶15、16),16有牵连。此外,结果显示,EV可以与不同物种的细胞通信,表明这种机制是一个关键锁系统,首先基于囊泡和受体细胞之间的表面分子识别,然后允许接受调子16,17。16,事实上,EV含有许多分子,如蛋白质(如酶、信号转导、生物成因)、脂质(如神经酰胺、胆固醇)或核酸(例如DNA、mRNA或miRNA),作为受体细胞活动的直接或间接调节剂14。这就是为什么方法学研究也进行免疫细胞分离EV和充分表征他们的蛋白质特征18,19。18,

最早的研究表明,在Wnt3a-或血清素依赖活化20,21,21之后,从原培养大鼠微胶质中释放外体是一种诱导机制。在CNS的功能中,微胶质衍生的EV调节突触神经质释放通过神经元的预显终端促进神经元兴奋性控制22,23。22,微胶衍生的EV也可以传播细胞因子介导的炎症反应在大大脑区域24,25。24,重要的是,收费型受体家族的多样化配体可能会激活微胶质26中特定EV的生产。例如,体外研究表明,LPS激活的微胶质BV2细胞系产生微分EV含量,包括亲炎细胞因子27。因此,通过自身的EV种群,包括EV对受体细胞的影响和EV内容的识别,可以评估中枢神经系统中免疫细胞亚群的功能多样性、微胶质和渗透性BMDM。

我们之前描述了在微胶质和BMDM衍生的EV分离16,19,19后的功能特性的方法。在本报告中,我们建议独立评估微胶质衍生的EV对神经质外生长的影响,以及巨噬细胞衍生的EV对胶质瘤细胞聚合控制的影响。本研究还提出了对EV分数进行广泛的蛋白质组分析,以验证EV分离程序,并识别生物活性蛋白特征。EV内容的有益效果和分子破译可以帮助它们可能操纵,并作为脑疾病的治疗剂使用。

Protocol

1. 微胶质/巨噬细胞的主要文化 微胶质的主要文化 培养商业大鼠原生微胶质(2 x 106细胞)(见材料表)在Dulbecco的改良鹰介质(DMEM)中补充10%无异体血清、100 U/mL青霉素、100微克/mL链球菌素和9.0克/L葡萄糖,37°C和5%CO2 。2 收集48小时培养后的条件介质,然后进行 EV 隔离。 巨噬细胞的主要培养 ?…

Representative Results

将生物效应归因于细胞外囊泡 (EV) 的主要挑战之一是能够将 EV 与整个培养介质隔离开来。在本报告中,我们提出了一种使用超中心(UC)和大小排除色谱(SEC)的方法,该方法与蛋白质特征的大规模分析相结合,以验证EV标记物并识别生物活性化合物。巨噬细胞或微胶质衍生的EV分别在24小时或48小时培养后与条件介质分离(图1)。 <p class="jove_content" fo:keep-together.within-p…

Discussion

中枢神经系统(CNS)是一个复杂的组织,细胞到细胞的通信调节平衡所需的正常神经元功能30。EV现已被广泛研究,并被描述为细胞到细胞通信的重要分子货物31。他们特别向受体细胞提供一种调子鸡尾酒,从而影响其在健康和病理条件下的功能32。最近的研究表明,EV在中枢神经系统24、33、3433,34…

Disclosures

The authors have nothing to disclose.

Acknowledgements

提交的作品得到了全国教育促进中心、全国教育与教育协会的支持。我们感谢BICeL-校园科学城设施获得仪器和技术建议。我们感谢让-帕斯卡尔·吉梅诺、苏莱曼·阿布卢亚德和伊莎贝尔·富尼耶为大众测量学援助。我们感谢塔尼娜·阿拉伯人、克里斯特尔·范坎普、弗朗索瓦丝·勒马雷克-克罗克、雅科波·维齐奥利和皮埃尔-埃里克·萨乌蒂埃对科学和技术发展所作的重大贡献。

Materials

12% Mini-PROTEAN TGX Precast Protein Gels Bio-rad 4561045EDU  
Acetonitrile Fisher Chemicals A955-1  
Amicon 50 kDa centrifugal filter Merck UFC505024  
Ammonium bicarbonate Sigma-Aldrich 9830  
HSP90 α/β antibody (RRID: AB_675659) Santa-cruz sc-13119  
B27 Plus supplement Gibco A3582801  
BenchMixer V2 Vortex Mixer Benchmark Scientific BV1003  
Bio-Rad Protein Assay Dye Reagent Concentrate (Bradford) Bio-Rad 5000006  
C18 ZipTips Merck Millipore ZTC18S096  
C6 rat glioma cell ATCC ATCC CCL-107  
Canonical tubes Sarstedt 62.554.002  
Centrifuge Eppendorf 5804000010  
CO2 Incubator ThermoFisher    
Confocal microscope LSM880 Carl Zeiss LSM880  
Cover glass Marienfeld 111580  
Culture Dish (60 mm) Sarstedt 82.1473  
Dithiothreitol Sigma-Aldrich 43819  
DMEM Gibco 41966029  
EASY-nLC 1000 Liquid Chromatograph ThermoFisher    
Electron microscope JEM-2100 JEOL    
Ethylene glycol-bis(2-aminoethylether)-N,N,N′,N′-tetraacetic acid Sigma-Aldrich 03777-10G  
Ethylenediaminetetraacetic acid Sigma-Aldrich ED-100G  
Exo-FBS Ozyme EXO-FBS-50A-1 Exosome depleted FBS
ExoCarta database (top 100 proteins of Evs)     http://www.exocarta.org/
Fetal Bovine Serum Gibco 16140071  
Fetal Horse Serum Biowest S0960-500  
Filtropur S 0.2 Sarstedt 83.1826.001  
Fisherbrand Q500 Sonicator with Probe Fisherbrand 12893543  
FlexAnalysis Brucker    
Fluorescence mounting medium Agilent S3023  
Formic Acid Sigma-Aldrich 695076  
Formvar-carbon coated copper grids Agar scientific Ltd AGS162-3  
Glucose Sigma-Aldrich G8769  
Glutaraldehyde Sigma-Aldrich 340855  
Hoechst 33342 Euromedex 17535-AAT  
Idoacetamide Sigma-Aldrich I1149  
InstantBlue Coomassie Protein Stain Expedeon ISB1L  
Invert light microscope CKX53 Olympus    
L-glutamine Gibco 25030-024  
LabTek II 8 wells  Nunc 154534  
Laemmli 2X Bio-Rad 1610737  
Laminin Corning 354232  
MaxQuant software (proteins identification software)     https://maxquant.net/maxquant/
MBT Polish stell Brucker 8268711  
MEM 10X Gibco 21090-022  
Methylcellulose Sigma-Aldrich M6385-100G  
MiliQ water Merck Millipore    
Milk Regilait REGILAIT300  
Mini PROTEAN Vertical Electrophoresis Cell Bio-Rad 1658000FC  
MonoP FPLC column GE Healthcare   no longer available
Nanosight NS300 Malvern Panalytical NS300  
NanoSight NTA software v3.2 Malvern Panalytical    
NanoSight syringe pump Malvern Panalytical    
Neurobasal Gibco 21103-049  
Nitrocellulose membrane GE Healthcare 10600007  
Nonidet P-40 Fluka 56741  
Nunc multidish 24 wells ThermoFisher 82.1473  
Paraformaldehyde Electro microscopy Science 15713  
PC-12 cell line ATCC ATCC CRL-1721  
Penicillin-Streptomycin Gibco 15140-122  
Peptide calibration mix LaserBio Labs C101  
Peroxidase AffiniPure Goat Anti-Mouse IgG (H+L) Jackson ImmunoResearch 115-035-003  
Perseus software (Processing of identified proteins)     https://maxquant.net/perseus/
Phalloidin-tetramethylrhodamine conjugate Santa-cruz sc-362065  
Phenylmethanesulfonyl fluoride Sigma-Aldrich 78830  
Phosphate Buffer Saline Invitrogen 14190094 no calcium, no magnesium
pluriStrainer M/ 60 µm pluriSelect 43-50060  
Poly-D-lysine Sigma-Aldrich P6407  
Polycarbonate centrifuge tubes Beckman Coulter 355651  
Protease Inhibitor Sigma-Aldrich S8830-20TAB  
PureCol Cell Systems 5005  
Q-Exactive mass spectrometer ThermoFisher    
rapifleX mass spectrometer Brucker    
Rat cortical neurons Cell Applications R882N-20 Cell origin : Derived from cerebral cortices of day 18 embryonic Sprague Dawley rat brains
Rat Macrophage & Microglia Culture Medium Cell Applications R620K-100 Cell orgin : Normal healthy Rat bone marrow
Rat primary macrophages Cell Applications R8818-10a  
Rat primary microglia Lonza RG535  
Sepharose CL-2B GE Healthcare 17014001  
Sequencing Grade Modified Trypsin Promega V5111  
Slide Dustsher 100204  
Sodium Chloride Scharlau SO0227  
Sodium Dodecyl Sulfate Sigma-Aldrich L3771  
Sodium Fluoride Sigma-Aldrich S7920-100G  
Sodium hydroxide Scharlab SO0420005P  
Sodium pyrophosphate Sigma-Aldrich S6422-100G  
SpeedVac Vacuum Concentrator ThermoFisher    
String software (functional protein association networks)     https://string-db.org/
SuperSignal West Dura extended Duration Substrate ThermoFisher 34075  
Syringe 1.0 mL Terumo 8SS01H1  
Trans-Blot SD Semi-Dry Transfer cell Bio-Rad 1703940  
Trifluoroacetic acid Sigma-Aldrich T6508  
Tris Interchim UP031657  
Tris-Glycine Euromedex EU0550  
Tween 20 Sigma-Aldrich P2287  
Ultracentrifuge Beckman Coulter A95765  
Ultracentrifuge Rotor 70.1 Ti Beckman Coulter 342184  
Uranyl acetate Agar Scientific Ltd AGR1260A  
Whatman filter paper Sigma-Aldrich WHA10347510  
α-Cyano-4-hydroxycinnamic acid Sigma-Aldrich C2020-25G  

References

  1. Thion, M. S., Ginhoux, F., Garel, S. Microglia and early brain development: An intimate journey. Science. 362 (6411), 185-189 (2018).
  2. Ginhoux, F., et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science. 330 (6005), 841-845 (2010).
  3. Sankowski, R., Mader, S., Valdes-Ferrer, S. I. Systemic Inflammation and the Brain: Novel Roles of Genetic, Molecular, and Environmental Cues as Drivers of Neurodegeneration. Frontiers in Cellular Neuroscience. 9, (2015).
  4. Chakrabarty, S., Kabekkodu, S. P., Singh, R. P., Thangaraj, K., Singh, K. K., Satyamoorthy, K. Microglia in health and disease. Cold Spring Harb. Perspect. Biol. 43 (3), 25-29 (2015).
  5. Sankowski, R., Mader, S., Valdés-Ferrer, S. I. Systemic inflammation and the brain: novel roles of genetic, molecular, and environmental cues as drivers of neurodegeneration. Frontiers in cellular neuroscience. 9, 28 (2015).
  6. Engelhardt, B., Vajkoczy, P., Weller, R. O. The movers and shapers in immune privilege of the CNS. Nature Immunology. 18 (2), 123-131 (2017).
  7. Louveau, A., et al. Structural and functional features of central nervous system lymphatic vessels. Nature. 523 (7560), 337-341 (2015).
  8. Domingues, P., et al. Tumor infiltrating immune cells in gliomas and meningiomas. Brain, Behavior, and Immunity. 53, 1-15 (2016).
  9. Hambardzumyan, D., Gutmann, D. H., Kettenmann, H. The role of microglia and macrophages in glioma maintenance and progression. Nature Neuroscience. 19 (1), 20-27 (2016).
  10. Thion, M. S., et al. Microbiome Influences Prenatal and Adult Microglia in a Sex-Specific Manner. Cell. 172 (3), 500-516 (2018).
  11. Hammond, T. R., et al. Single-Cell RNA Sequencing of Microglia throughout the Mouse Lifespan and in the Injured Brain Reveals Complex Cell-State Changes. Immunity. 50 (1), 253-271 (2019).
  12. Rajendran, L., et al. Emerging Roles of Extracellular Vesicles in the Nervous System. The Journal of Neuroscience. 34 (46), 15482-15489 (2014).
  13. Gupta, A., Pulliam, L. Exosomes as mediators of neuroinflammation. Journal of Neuroinflammation. 11 (1), 68 (2014).
  14. van Niel, G., D’Angelo, G., Raposo, G. Shedding light on the cell biology of extracellular vesicles. Nature Reviews Molecular Cell Biology. 19 (4), 213-228 (2018).
  15. Budnik, V., Ruiz-cañada, C., Wendler, F. Extracellular vesicles round off communication in the nervous system. Nature Reviews Neurosciences. 17, 160-172 (2016).
  16. Raffo-Romero, A., et al. Medicinal Leech CNS as a Model for Exosome Studies in the Crosstalk between Microglia and Neurons. International Journal of Molecular Sciences. 19 (12), 4124 (2018).
  17. Zhou, Y., et al. Exosomes Transfer Among Different Species Cells and Mediating miRNAs Delivery. Journal of Cellular Biochemistry. 118 (12), 4267-4274 (2017).
  18. Arab, T., et al. Proteomic characterisation of leech microglia extracellular vesicles (EVs): comparison between differential ultracentrifugation and OptiprepTM density gradient isolation. Journal of extracellular vesicles. 8 (1), 1603048 (2019).
  19. Murgoci, A. -. N., et al. Brain-Cortex Microglia-Derived Exosomes: Nanoparticles for Glioma Therapy. ChemPhysChem. 19 (10), 1205-1214 (2018).
  20. Glebov, K., et al. Serotonin stimulates secretion of exosomes from microglia cells. Glia. 63 (4), 626-634 (2015).
  21. Hooper, C., et al. Wnt3a induces exosome secretion from primary cultured rat microglia. BMC Neuroscience. 13 (1), 144 (2012).
  22. Gabrielli, M., et al. Active endocannabinoids are secreted on extracellular membrane vesicles. EMBO reports. 16 (2), 213-220 (2015).
  23. Antonucci, F., et al. Microvesicles released from microglia stimulate synaptic activity via enhanced sphingolipid metabolism. The EMBO Journal. 31 (5), 1231-1240 (2012).
  24. Frühbeis, C., Fröhlich, D., Kuo, W. P., Krämer-Albers, E. -. M. Extracellular vesicles as mediators of neuron-glia communication. Frontiers in Cellular Neuroscience. 7, 182 (2013).
  25. Prada, I., et al. Glia-to-neuron transfer of miRNAs via extracellular vesicles: a new mechanism underlying inflammation-induced synaptic alterations. Acta neuropathologica. 135 (4), 529-550 (2018).
  26. Takenouchi, T., et al. Extracellular ATP induces unconventional release of glyceraldehyde-3-phosphate dehydrogenase from microglial cells. Immunology Letters. 167 (2), 116-124 (2015).
  27. Yang, Y., Boza-Serrano, A., Dunning, C. J. R., Clausen, B. H., Lambertsen, K. L., Deierborg, T. Inflammation leads to distinct populations of extracellular vesicles from microglia. Journal of Neuroinflammation. 15 (1), 168 (2018).
  28. Duhamel, M., et al. Paclitaxel Treatment and Proprotein Convertase 1/3 (PC1/3) Knockdown in Macrophages is a Promising Antiglioma Strategy as Revealed by Proteomics and Cytotoxicity Studies. Molecular & Cellular Proteomics. 17 (6), 1126-1143 (2018).
  29. Pool, M., Thiemann, J., Bar-Or, A., Fournier, A. E. NeuriteTracer: A novel ImageJ plugin for automated quantification of neurite outgrowth. Journal of Neuroscience Methods. 168 (1), 134-139 (2008).
  30. Domingues, H. S., Portugal, C. C., Socodato, R., Relvas, J. B. Oligodendrocyte, Astrocyte, and Microglia Crosstalk in Myelin Development, Damage, and Repair. Frontiers in Cell and Developmental Biology. 4, 71 (2016).
  31. Rashed, M. H., et al. Exosomes: From Garbage Bins to Promising Therapeutic Targets. Int. J. Mol. Sci. Int. J. Mol. Sci. 18 (18), (2017).
  32. Yuana, Y., Sturk, A., Nieuwland, R. Extracellular vesicles in physiological and pathological conditions. Blood Reviews. 27 (1), 31-39 (2013).
  33. Frohlich, D., et al. Multifaceted effects of oligodendroglial exosomes on neurons: impact on neuronal firing rate, signal transduction and gene regulation. Philosophical Transactions of the Royal Society B: Biological Sciences. 369 (1652), (2014).
  34. Krämer-Albers, E. -. M., et al. Oligodendrocytes secrete exosomes containing major myelin and stress-protective proteins: Trophic support for axons. Proteomics. Clinical applications. 1 (11), 1446-1461 (2007).
  35. Verderio, C., et al. Myeloid microvesicles are a marker and therapeutic target for neuroinflammation. Annals of Neurology. 72 (4), 610-624 (2012).
  36. Prada, I., Furlan, R., Matteoli, M., Verderio, C. Classical and Unconventional Pathways of Vesicular Release in Microglia. GLIA. 61, 1003-1017 (2013).
  37. Prinz, M., Priller, J. The role of peripheral immune cells in the CNS in steady state and disease. Nature Neuroscience. 20 (2), 136-144 (2017).
  38. Li, Q., Barres, B. A. Microglia and macrophages in brain homeostasis and disease. Nature Reviews Immunology. , (2017).
  39. Kennedy, B. C., et al. Tumor-Associated Macrophages in Glioma: Friend or Foe. Journal of Oncology. 2013, 1-11 (2013).
  40. Potolicchio, I., Carven, G. J., Xu, X., Stipp, C., Riese, R. J., Stern, L. J., Santambroggio, L. Proteomic Analysis of Microglia-Derived Exosomes: Metabolic Role of the Aminopeptidase CD13 in Neuropeptide Catabolism1. The Journal of Immunology. 175, 2237-2243 (2005).
  41. Turola, E., Furlan, R., Bianco, F., Matteoli, M., Verderio, C. Microglial microvesicle secretion and intercellular signaling. Frontiers in Physiology. 3, (2012).
  42. Cocucci, E., Meldolesi, J. Ectosomes and exosomes : shedding the confusion between extracellular vesicles. Trends in Cell Biology. 25 (6), 364-372 (2015).
  43. Théry, C., et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. Journal of Extracellular Vesicles. 7 (1), 1535750 (2018).
  44. de Vrij, J., et al. Glioblastoma-derived extracellular vesicles modify the phenotype of monocytic cells. International Journal of Cancer. 137 (7), 1630-1642 (2015).
  45. van der Vos, K. E., et al. Directly visualized glioblastoma-derived extracellular vesicles transfer RNA to microglia/macrophages in the brain. Neuro-Oncology. 18 (1), 58-69 (2016).
check_url/60118?article_type=t

Play Video

Cite This Article
Lemaire, Q., Duhamel, M., Raffo-Romero, A., Salzet, M., Lefebvre, C. Characterization of Immune Cell-derived Extracellular Vesicles and Studying Functional Impact on Cell Environment. J. Vis. Exp. (160), e60118, doi:10.3791/60118 (2020).

View Video