Summary

使用Y-27632的原发性人类金吉瓦尔表皮细胞的隔离与培养

Published: November 06, 2021
doi:

Summary

在这里,我们提出了一个改进的方法,通过添加岩石抑制剂,Y-27632,以传统的方法隔离和培养人类金吉瓦尔上皮细胞。这种方法更容易,更省时,提高干细胞的特性,并产生更多的高潜力上皮细胞,无论是为实验室和临床应用。

Abstract

牙周组织是保护牙周组织的第一个结构,在许多口腔功能中起着有意义的作用。金银核酸上皮是金银组织的重要结构,特别是在牙周组织的修复和再生中。研究金吉瓦尔上皮细胞的功能具有重要的科学价值,如修复口腔缺陷和检测生物材料的兼容性。由于人类上皮细胞是高度分化的角蛋白细胞,其寿命短,难以通过。到目前为止,只有两种方法可以分离和培养金吉瓦尔上皮细胞,一种是直接的外生方法,另一种是酶。然而,使用直接外生法获得上皮细胞所需的时间较长,酶法的细胞存活率较低。临床上,金银组织采集有限,因此需要一个稳定、高效、简单的 体外 隔离培养系统。我们通过添加Y-27632(一种与Rho相关的激酶(ROCK)抑制剂,改进了传统的酶方法,这种抑制剂可以选择性地促进上皮细胞的生长。我们改良的酶法简化了传统酶方法的步数,提高了上皮细胞的培养效率,比直接除菌法和酶法具有显著优势。

Introduction

人牙石是保护牙周组织的第一道防线结构,它不仅是物理和化学屏障1,而且分泌不同类别的炎症调解员参与免疫反应,构成免疫屏障2、3。金银上皮在牙周组织的修复和再生中起着重要的作用。因此,研究牙周炎的防御和免疫,对于了解牙周炎的发生、诊断和治疗具有重要意义。从人类金银杏组织中分离和培养金吉瓦尔上皮细胞是研究金吉瓦尔上皮的第一步。这种程序需要基本操作,如为组织工程生产种子细胞、牙周相关疾病的体外模型以及修复牙周缺陷的材料。

原发性金银体上皮细胞的特点是体外4的分化率低,几十年来,研究人员一直在寻找最佳的分离和培养方法。迄今为止,实验室中通常使用两种不同的技术,即直接外生法和酶法,在体外获得原发性金吉瓦尔上皮细胞。直接除种方法具有组织标本量低、隔离程序简单等优点,但具有培养时间长、易受污染等优点。虽然酶方法缩短了所需的培养时间,但效率相对较低,并且因使用的酶和介质而异。Kedjarune等人6表明,与酶方法相比,直接外植方法在亚文化(2周)之前需要更多的时间,在培养金吉瓦尔上皮细胞方面似乎更为成功。然而,比较这两种方法,Klingbeil等人发现,这种酶方法对口腔上皮细胞的原发培养效果最好,并且有可能在最短的时间内(11.9天对14.2天)获得最佳细胞产量。

因此,开发一种更方便、更有效的口腔上皮细胞分离与培养方法非常重要。我们之前报告说,添加Y-27632,Rho相关蛋白激酶(ROCK)的抑制剂,简化了人类原发性表皮细胞和角蛋白细胞从成人皮肤组织8,9,10分离程序。我们开发了G-media,一种新的条件接种介质,自发地将表皮与皮肤细胞分离,支持原发性表皮细胞8、9、10的生长和产量。在本研究中,我们通过将G-中型细胞与Y-27632结合,开发出一种新的无血清分离培养技术。从本质上讲,我们的方法是基于对传统两步酶方法的简化,因此我们比较了新方法和直接外生方法。这种改良的酶方法大大缩短了将金吉瓦尔上皮细胞与金银杏组织分离所需的时间,并提高了培养金吉瓦尔上皮细胞的效率。

Protocol

根据该学会人类研究伦理委员会的指导方针,本协议中使用的人体组织是从Maxillo面部外科拔出受影响的牙齿中丢弃的新鲜成人金银杏组织。GR201711,日期:02-27-2017)。 1. 准备工作 在含有 10 mL 磷酸盐缓冲盐水 (PBS) 的 15 mL 管中收集新鲜的成人金银杏组织,辅以 3% 青霉素/链霉素 (P/S),并将组织保持在 4 °C。注:切除后24小时内将下面的组织详细处?…

Representative Results

图1 显示了直接外分法和改性酶法的示意图。在整个过程中,直接外生方法不需要任何消化酶。相比之下,传统的酶方法通常需要两套消化酶,脱口而出和拼贴,将上皮板从底层成纤维细胞层分离,然后尝试将上皮细胞释放到悬浮中。我们的新方法省略了分离的步骤,是一种简化的酶方法。此外,在G-中型中加入Y-27632可有效促进上皮细胞生长。直接外植方法通常需要大约2周?…

Discussion

牙周组织是维持牙周完整性和健康的关键结构。金吉瓦尔上皮细胞在牙周组织的修复和再生中起着重要作用,可用于科学研究和临床应用及相关领域,包括口腔生物学、药理学、毒理学和口腔粘膜缺乏症18。因此,有必要开发一种稳定而有效的方法来收获口腔上皮细胞19。原发性上皮细胞是一种完全分化的细胞,通道少,寿命短。培育上皮细胞已被证明是比培养…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作得到了山东省自然科学基金重点项目(ZR2019ZD36)和山东省重点研究发展计划(2019GSF108107)的支持。山东省重点研发计划(2018GSF118240)向J.G.:山东省医疗卫生科技发展项目(2018WS163)至Z.X.,山东省医疗卫生科技发展项目(2019WS045)至J.S.

Materials

Names Abbreviations & Comments
Countess automated cell counter Shanghai Ruiyu Bio-science&Technology Co.Ltd. BBA0218AC Automatic cell counting
CO2 Incubator Thermo Scientific 51026333 For cell incubation
Sorvall ST 16R Centrifuge Thermo Scientific 75004380 Cell centrifuge
Cell Culture Dish Eppendorf 30702115 For cell culture
50 ml Centrifuge Tube KIRGEN 171003 For cell centrifugation
1.5 ml microcentrifuge Tubes KIRGEN 190691J For cell digestion
Cell Strainer Corning incorporated 431792 Cell filtration
Phosphate buffered solution Solarbio Life Science P1020-500 Washing solution
DMEM Thermo Scientific C11995500 Component of neutralization medium
Defined K-SFM Life Technologies 10785-012 Gingival epithelial  cells culture medium
Penicillin Streptomycin Thermo Scientific 15140-122 Antibiotics
Fetal Bovine Serum Biological Industries 04-001-1AC5 Component of neutralization medium
0.05% Trypsin Life Technologies 25300-062 For HGGEPCs dissociation
Dilution Medium Life Technologies 50-9701 For coating matrix
Dispase Gibco 17105-041 For HGGEPCs isolation
Collagenase Type I Life Technologies 17100-017 For HGGEPCs isolation
F12 Nutrient Mix, Hams Life Technologies 31765035 Component of G-medium
B27 Supplement Life Technologies 17504044 Growth factor in G-medium
FGF-2 Millipore Merck Biosciences 341595 Growth factor in G-medium
Y-27632 Gene Operation IAD1011 ROCK inhibitor
Fungizone Gibco 15290026 Preparation for G-medium
EGF Recombinant Human Protein Gibco PHG0311 Growth factor in G-medium
Cell Counting Kit-8 Dojindo Molecular Technologies CK04 For Cell proliferation assay
Rabbit Anti-Human CK18 Abcam ab82254 For immunofluorescence staining to check differentiation marker of HGGEPCs
Rabbit Anti-Human Cytokeratin10 Abcam ab76318 For immunofluorescence staining to check differentiation marker of HGGEPCs
Mouse anti-human Vimentin Cell Signaling Technology 3390 For immunofluorescence staining of Gingival fibroblasts
Rabbit Anti-Human pan-ck BD 550951 For immunofluorescence staining to check differentiation marker of HGGEPCs
rabbit anti-Ki67 Abcam 15580 For immunofluorescence staining to check differentiation marker of HGGEPCs
rabbit anti-p63 Biolegend 619002 For immunofluorescence staining to check differentiation marker of HGGEPCs
rabbit anti-p75NGFR Abcam ab52987 For immunofluorescence staining to check differentiation marker of HGGEPCs

References

  1. Takahashi, N., et al. Gingival barrier: regulation by beneficial and harmful microbes. Tissue Barriers. 7, 1651158 (2019).
  2. Michea, P., et al. Epithelial control of the human pDC response to extracellular bacteria. European Journal of Immunology. 43, 1264-1273 (2013).
  3. Bedran, T. B., Mayer, M. P., Spolidorio, D. P., Grenier, D. Synergistic anti-inflammatory activity of the antimicrobial peptides human beta-defensin-3 (hBD-3) and cathelicidin (LL-37) in a three-dimensional co-culture model of gingival epithelial cells and fibroblasts. PloS one. 9, 106766 (2014).
  4. Sciezynska, A., et al. Isolation and culture of human primary keratinocytes-a methods review. Experimental Dermatology. 28, 107-112 (2019).
  5. Bryja, A., et al. Overview of the different methods used in the primary culture of oral mucosa cells. Journal of Biological Regulators and Homeostatic Agents. 33, 397-401 (2019).
  6. Kedjarune, U., Pongprerachok, S., Arpornmaeklong, P., Ungkusonmongkhon, K. Culturing primary human gingival epithelial cells: comparison of two isolation techniques. Journal of Cranio-Maxillo-Facial Surgery: Official Publication of the European Association for Cranio-Maxillo-Facial Surgery. 29, 224-231 (2001).
  7. Klingbeil, M. F., et al. Comparison of two cellular harvesting methods for primary human oral culture of keratinocytes. Cell and Tissue Banking. 10, 197-204 (2009).
  8. Qian, H., et al. One-step simple isolation method to obtain both epidermal and dermal stem cells from human skin specimen. Methods in Molecular Biology. 1879, 139-148 (2019).
  9. Wen, J., Zu, T., Zhou, Q., Leng, X., Wu, X. Y-27632 simplifies the isolation procedure of human primary epidermal cells by selectively blocking focal adhesion of dermal cells. Journal of Tissue Engineering and Regenerative Medicine. 12, 1251-1255 (2018).
  10. Liu, Z., et al. A simplified and efficient method to isolate primary human keratinocytes from adult skin tissue. Journal of Visualized Experiments: JoVE. , (2018).
  11. Lauer, G., Wiedmann-Al-Ahmad, M., Otten, J. E., Hubner, U. Immunohistochemical study during healing of free palatal mucosa grafts on plastic-embedded samples. Journal of Oral Pathology & Medicine: Official Publication of the International Association of Oral Pathologists and the American Academy of Oral Pathology. 30, 104-112 (2001).
  12. Locke, M., Hyland, P. L., Irwin, C. R., Mackenzie, I. C. Modulation of gingival epithelial phenotypes by interactions with regionally defined populations of fibroblasts. Journal of Periodontal Research. 43, 279-289 (2008).
  13. Shabana, A. H., Ouhayoun, J. P., Sawaf, M. H., Forest, N. Cytokeratin patterns of human oral mucosae in histiotypic culture. Archives of Oral Biology. 36, 747-758 (1991).
  14. Kasai, Y., et al. biopsy of human oral mucosal epithelial cells as a quality control of the cell source for fabrication of transplantable epithelial cell sheets for regenerative medicine. Regenerative Therapy. 4, 71-77 (2016).
  15. Oda, D., Dale, B. A., Bourekis, G. Human oral epithelial cell culture. II. Keratin expression in fetal and adult gingival cells. In Vitro Cellular & Developmental Biology: Journal of the Tissue Culture Association. 26, 596-603 (1990).
  16. Guarino, M., Tosoni, A., Nebuloni, M. Direct contribution of epithelium to organ fibrosis: epithelial-mesenchymal transition. Human Pathology. 40, 1365-1376 (2009).
  17. Hatakeyama, S., Yaegashi, T., Takeda, Y., Kunimatsu, K. Localization of bromodeoxyuridine-incorporating, p63- and p75(NGFR)- expressing cells in the human gingival epithelium. Journal of Oral Science. 49, 287-291 (2007).
  18. Bayar, G. R., Aydintug, Y. S., Gunhan, O., Ozturk, K., Gulses, A. Ex vivo produced oral mucosa equivalent by using the direct explant cell culture technique. Balkan Medical Journal. 29, 295-300 (2012).
  19. Daniels, J. T., Kearney, J. N., Ingham, E. Human keratinocyte isolation and cell culture: a survey of current practices in the UK. Burns: Journal of the International Society for Burn Injuries. 22, 35-39 (1996).
  20. Carrel, A., Burrows, M. Cultivation of adult tissues and organs outside the body. Journal of the American Medical Association. 55, 1379-1381 (1910).
  21. Rheinwald, J. G., Green, H. Formation of a keratinizing epithelium in culture by a cloned cell line derived from a teratoma. Cell. 6, 317-330 (1975).
  22. Oda, D., Watson, E. Human oral epithelial cell culture I. Improved conditions for reproducible culture in serum-free medium. In Vitro Cellular & Developmental Biology: Journal of the Tissue Culture Association. 26, 589-595 (1990).
  23. Boyce, S. T., Ham, R. G. Calcium-regulated differentiation of normal human epidermal keratinocytes in chemically defined clonal culture and serum-free serial culture. The Journal of Investigative Dermatology. 81, 33-40 (1983).
  24. Guo, A., Jahoda, C. A. An improved method of human keratinocyte culture from skin explants: cell expansion is linked to markers of activated progenitor cells. Experimental Dermatology. 18, 720-726 (2009).
  25. Smola, H., Krieg, T., Irene, M., Leigh, E., Lane, B., Watt, F. M. . The keratinocyte handbook. 375, 311 (1994).
  26. Shwetha, H. R., et al. Ex vivo culture of oral keratinocytes using direct explant cell culture technique. Journal of Oral and Maxillofacial Pathology: JOMFP. 23, 243-247 (2019).
  27. Yin, J., Yu, F. S. Rho kinases regulate corneal epithelial wound healing. American Journal of Physiology. Cell Physiology. 295, 378-387 (2008).
  28. Chapman, S., Liu, X., Meyers, C., Schlegel, R., McBride, A. A. Human keratinocytes are efficiently immortalized by a Rho kinase inhibitor. The Journal of Clinical Investigation. 120, 2619-2626 (2010).
  29. Strudwick, X. L., Lang, D. L., Smith, L. E., Cowin, A. J. Combination of low calcium with Y-27632 rock inhibitor increases the proliferative capacity, expansion potential and lifespan of primary human keratinocytes while retaining their capacity to differentiate into stratified epidermis in a 3D skin model. PloS One. 10, 0123651 (2015).
  30. Orazizadeh, M., Hashemitabar, M., Bahramzadeh, S., Dehbashi, F. N., Saremy, S. Comparison of the enzymatic and explant methods for the culture of keratinocytes isolated from human foreskin. Biomedical Reports. 3, 304-308 (2015).
  31. Rosin, F. C. P., et al. Keratin expression in gingival tissue and primary cultured gingival keratinocytes: Are there differences. Archives of Oral Biology. 117, 104780 (2020).
  32. Wang, T., Kang, W., Du, L., Ge, S. Rho-kinase inhibitor Y-27632 facilitates the proliferation, migration and pluripotency of human periodontal ligament stem cells. Journal of Cellular and Molecular Medicine. 21, 3100-3112 (2017).
check_url/62978?article_type=t

Play Video

Cite This Article
Xie, Z., Shi, J., Zong, M., Xu, Q., Liu, C., Wen, J., Zhang, Q., Liu, P., Liu, G., Guo, J., Wu, X. Isolation and Culture of Primary Human Gingival Epithelial Cells using Y-27632. J. Vis. Exp. (177), e62978, doi:10.3791/62978 (2021).

View Video