Summary

大鼠烧伤模型研究全层皮肤热烧伤和感染

Published: August 23, 2022
doi:

Summary

模拟烧伤和感染临床情况的模型对于进一步烧伤研究是必要的。本协议展示了一种与人类相当的简单且可重复的大鼠烧伤感染模型。这有助于研究烧伤后烧伤和感染,以开发新的局部抗生素治疗。

Abstract

烧伤诱导方法在大鼠模型中的描述不一致。代表临床情况的统一烧伤创面模型对于进行可重复的烧伤研究是必要的。本协议描述了一种简单且可重复的方法,可在大鼠中产生~20%的总体表面积(TBSA)全层烧伤。在这里,将22.89cm2 (直径5.4cm)铜棒在水浴中加热97°C以诱导烧伤。具有高导热性的铜棒能够将热量散发到皮肤组织中的更深处,从而产生全层灼伤。组织学分析显示表皮减毒,真皮和皮下组织的全层厚度存在凝血损伤。此外,该模型代表了在烧伤后住院烧伤患者中观察到的临床情况,例如免疫失调和细菌感染。该模型可以概括革兰氏阳性和革兰氏阴性细菌的全身性细菌感染。综上所述,本文提出了一种易于学习且稳健的大鼠烧伤模型,该模型模拟了包括免疫失调和细菌感染在内的临床情况,对于开发用于烧伤创面和感染的新型外用抗生素具有相当大的实用性。

Introduction

烧伤是最具破坏性的创伤形式之一,即使在专门的烧伤中心,死亡率也达到 12%123。根据最近发表的报告,美国每年有~486,000名烧伤患者需要医疗护理,其中近3,500人死亡123456。烧伤对患者的免疫系统构成重大挑战,并形成明显的开放性伤口,愈合缓慢,使他们容易受到皮肤、肺部和全身性院内机会性细菌的定植。免疫失调与细菌感染相结合与烧伤患者的发病率和死亡率增加有关7

动物烧伤和感染模型对于研究皮肤损伤和烧伤创伤相关免疫抑制后细菌感染的发病机制至关重要。这些模型能够设计和评估治疗烧伤患者细菌感染的新方法。大鼠和人类具有先前记录的相似的皮肤生理和病理特征8。此外,与较大的动物模型相比,大鼠的体型更小,使它们更容易处理、更实惠、更容易采购和维护。

这些特征使大鼠成为研究烧伤和感染的理想模式动物9。不幸的是,烧伤诱导技术不一致,并且通常描述最少1011121314。本协议旨在开发一种简单,具有成本效益和可重复的程序,用于在模拟临床场景的大鼠模型中创建一致的全层烧伤损伤,并可用于评估免疫抑制和细菌感染。

Protocol

所有程序均由北卡罗来纳大学机构动物护理和使用委员会(IACUC)批准,并按照其既定指南进行。使用7-9周龄的雄性和雌性Sprague Dawley大鼠(250-300g)进行实验。所有动物均被饲养在12 h:12 h明暗循环中,可随意获取食物 和水。在研究开始之前,请务必与您的机构兽医合作制定镇痛计划。 1.为大鼠准备烧伤 在烧伤前24小时准备动物烧伤。 在诱?…

Representative Results

这里提出的方案是高度可重复的,并导致大鼠三度全层烧伤。烧伤诱导后烧伤创面呈蜡白色(图2B)。烧伤后72小时烧伤的颜色从白色变为棕色(图2B-E)。 组织学分析证实烧伤后24小时全层烧伤(深度>2.61毫米; 图 3B)。与完整的非烧伤皮肤相比,烧伤动物的皮肤样本在烧伤后24、48和7…

Discussion

已经提出了几种烧伤模型来研究烧伤的病理生理学8121617在本研究中,我们采用大鼠模型开发了一种简单且可重复的方案,以诱导全层烧伤,然后是细菌感染,以模拟患者的感染烧伤创伤。选择大鼠作为动物模型来模拟人类条件是基于成本、易用性、可重复性和数据可靠性的平衡。本文中使用…

Disclosures

The authors have nothing to disclose.

Acknowledgements

作者感谢北卡罗来纳大学比较医学系提供和照顾动物。我们感谢病理学服务核心的Lauren Ralph和Mia Evangelista在组织病理学/数字病理学方面的专家技术援助,包括组织切片和成像。这项研究得到了国防部的研究资助(奖励号W81XWH-20-1-0500,GR和TV)。

Materials

1 mL syringe BD, USA 309597 Used to inject the analgesic
1.7 mL Microtube Olympus, USA 24-282 Used to carry morphine
10% NBF VWR, USA 16004-115 Used to fix the skin piece for staining
30 mL syringe BD, USA 302832 Used to inject the lactate ringer solution
70% ethyl alcohol Fischer Scientific, USA BP28184
Aperio AT2 Digital Pathology  Slide Scanner with ImageScope software Aperio, Technologies Inc., Vista, CA, USA n/a Scanning of H & E slides and analysis
Cetrimide agar plates BD, USA 285420 Selective media plates for Pseudomonas aeruginosa growth
Copper rods n/a n/a Used to induce the burn injury
Cotton tipped applicators OMEGA Surgical supply, USA 4225-IMC Used to apply eye ointment
Electric shaver Oster, USA Golden A5 Used to remove the dorsal side hairs
Eye lube Dechra, UK n/a The eye wetting agent to provide long lasting comfort and avoid eye dryness
Fluff filled underpads Medline, USA MSC281225 Used in the burn procedure
Forcep F.S.T. 11027-12 Used to hold the skin piece
Gauze sponges Oasis, USA PK412 Used to clean the applied nair cream from the dorsal side 
Heat-resistant gloves n/a n/a Used to hold the heated copper rods
Hematology Analyzer IDEXX laboratories, USA ProCyte Dx
Induction chamber Kent Scientific, USA vetFlo-0730 Used to anesthesize the animals
Insulin syringe BD, USA 329461
Isoflurane Pivetal, USA NDC46066-755-04 Used to anesthesized rats to induce a loss of consciousness
Isoflurane vaporiser n/a n/a
Lactated ringer's solution icumedical, USA NDC0990-7953-09 Used to resuscitate the rats
L-shaped spreader Fischer Scientific, USA 14-665-230
Mannitol Agar BD, USA 211407 Selective media plates for Staphylococcus aureus growth
Minicollect tubes (K2EDTA) greiner bio-one, USA 450480 Used to collect the blood
Morphine Mallinckrodt, UK NDC0406-8003-30 This analgesia was used to induce the inability to feel burn injury pain
Muller Hinton Broth BD, USA 275730
Muller Hinton II Agar BD, USA 211438
Nair hair removal lotion Nair, USA n/a Used to remove the residual hairs on dorsal side
Needle 23 G BD, USA 305193 Used to inject the lactate ringer solution
Normal saline n/a n/a
Spectrophotometer ThermoScientific, USA Genesys 30
Sprague-Dawley rats, male and female Charles River Labs n/a 7-9 weeks old for burn induction
Surgical Scissor F.S.T. 14501-14 Used to cut the desired skin piece
Tissue collection tubes Globe Scientific 220101236
Tissue Homogenizer Kinematica, Inc, USA POLYTRON PT2100 Used to homogenize the tissue samples
Water bath Fischer Scientific, USA n/a Used to induce the burn injury
Weighted heating pad Comfytemp, USA n/a Used during the procedure to keep rat's body warm

References

  1. Peck, M., Molnar, J., Swart, D. A global plan for burn prevention and care. Bulletin of the World Health Organization. 87, 802-803 (2009).
  2. American Burn Association. Burn incidence and treatment in the United States: 2011 fact sheet. Chicago: American Burn Association. , (2011).
  3. Miller, S. F., et al. National burn repository 2007 report: a synopsis of the 2007 call for data. Journal of Burn Care & Research. 29 (6), 862-870 (2008).
  4. Kruger, E., Kowal, S., Bilir, S. P., Han, E., Foster, K. Relationship between patient characteristics and number of procedures as well as length of stay for patients surviving severe burn injuries: analysis of the American Burn Association National Burn Repository. Journal of Burn Care & Research. 41 (5), 1037-1044 (2020).
  5. American Burn Association. Burn incidence and treatment in the United States: 2016. Burn Incidence Fact Sheet. Chicago: American Burn Association. , (2016).
  6. Willis, M. L., et al. Plasma extracellular vesicles released after severe burn injury modulate macrophage phenotype and function. Journal of Leukocyte Biology. 111 (1), 33-49 (2022).
  7. Kartchner, L. B., et al. One-hit wonder: late after burn injury, granulocytes can clear one bacterial infection but cannot control a subsequent infection. Burns. 45 (3), 627-640 (2019).
  8. Abdullahi, A., Amini-Nik, S., Jeschke, M. Animal models in burn research. Cellular and Molecular Life Sciences. 71 (17), 3241-3255 (2014).
  9. Cai, E. Z., et al. Creation of consistent burn wounds: a rat model. Archives of Plastic Surgery. 41 (4), 317 (2014).
  10. Pessolato, A. G. T., dos Santos Martins, D., Ambrósio, C. E., Mançanares, C. A. F., de Carvalho, A. F. Propolis and amnion reepithelialise second-degree burns in rats. Burns. 37 (7), 1192-1201 (2011).
  11. Gurung, S., Škalko-Basnet, N. Wound healing properties of Carica papaya latex: in vivo evaluation in mice burn model. Journal of Ethnopharmacology. 121 (2), 338-341 (2009).
  12. Eloy, R., Cornillac, A. Wound healing of burns in rats treated with a new amino acid copolymer membrane. Burns. 18 (5), 405-411 (1992).
  13. Upadhyay, N., et al. Safety and healing efficacy of Sea buckthorn (Hippophae rhamnoides L.) seed oil on burn wounds in rats. Food and Chemical Toxicology. 47 (6), 1146-1153 (2009).
  14. El-Kased, R. F., Amer, R. I., Attia, D., Elmazar, M. M. Honey-based hydrogel: In vitro and comparative In vivo evaluation for burn wound healing. Scientific Reports. 7 (1), 1-11 (2017).
  15. Fan, G. -. Y., et al. Severe burn injury in a swine model for clinical dressing assessment. Journal of Visualized Experiments. (141), e57942 (2018).
  16. Davenport, L., Dobson, G., Letson, H. A new model for standardising and treating thermal injury in the rat. MethodsX. 6, 2021-2027 (2019).
  17. Kaufman, T., Lusthaus, S., Sagher, U., Wexler, M. Deep partial skin thickness burns: a reproducible animal model to study burn wound healing. Burns. 16 (1), 13-16 (1990).
  18. Casal, D., et al. Blood supply to the integument of the abdomen of the rat: a surgical perspective. Plastic and Reconstructive Surgery Global Open. 5 (9), (2017).
  19. Casal, D., et al. A model of free tissue transfer: the rat epigastric free flap. Journal of Visualized Experiments. (119), e55281 (2017).
  20. Naldaiz-Gastesi, N., Bahri, O. A., Lopez de Munain, A., McCullagh, K. J., Izeta, A. The panniculus carnosus muscle: an evolutionary enigma at the intersection of distinct research fields. Journal of Anatomy. 233 (3), 275-288 (2018).
  21. Weber, B., et al. Modeling trauma in rats: similarities to humans and potential pitfalls to consider. Journal of Translational Medicine. 17 (1), 1-19 (2019).
  22. Nguyen, J. Q. M., et al. Spatial frequency domain imaging of burn wounds in a preclinical model of graded burn severity. Journal of Biomedical Optics. 18 (6), 066010 (2013).
  23. Sobral, C., Gragnani, A., Morgan, J., Ferreira, L. Inhibition of proliferation of Pseudomonas aeruginosa by KGF in an experimental burn model using human cultured keratinocytes. Burns. 33 (5), 613-620 (2007).
  24. Olivera, F., Bevilacqua, L., Anaruma, C., Boldrini Sde, C., Liberti, E. Morphological changes in distant muscle fibers following thermal injury i n Wistar rats. Acta Cirurgica Brasileira. 25, 525-528 (2010).
  25. Davies, J. W. . Physiological Responses to Burning Injury. , (1982).
  26. Neely, C. J., et al. Flagellin treatment prevents increased susceptibility to systemic bacterial infection after injury by inhibiting anti-inflammatory IL-10+ IL-12-neutrophil polarization. PloS One. 9 (1), e85623 (2014).
  27. Dunn, J. L., et al. Direct detection of blood nitric oxide reveals a burn-dependent decrease of nitric oxide in response to Pseudomonas aeruginosa infection. Burns. 42 (7), 1522-1527 (2016).
  28. Gouma, E., et al. A simple procedure for estimation of total body surface area and determination of a new value of Meeh’s constant in rats. Laboratory Animals. 46 (1), 40-45 (2012).
  29. Dawson, N. The surface-area/body-weight relationship in mice. Australian Journal of Biological Sciences. 20 (3), 687-690 (1967).
  30. Moins-Teisserenc, H., et al. Severe altered immune status after burn injury is associated with bacterial infection and septic shock. Frontiers in Immunology. 12, 529 (2021).
  31. Robins, E. V. Immunosuppression of the burned patient. Critical Care Nursing Clinics. 1 (4), 767-774 (1989).
check_url/64345?article_type=t

Play Video

Cite This Article
Sharma, R., Yeshwante, S., Vallé, Q., Hussein, M., Thombare, V., McCann, S. M., Maile, R., Li, J., Velkov, T., Rao, G. Rat Burn Model to Study Full-Thickness Cutaneous Thermal Burn and Infection. J. Vis. Exp. (186), e64345, doi:10.3791/64345 (2022).

View Video