Summary

Colture cellulari tridimensionali di cellule staminali derivate dal tessuto adiposo in un idrogel con aumento della fotobiomodulazione

Published: April 05, 2024
doi:

Summary

Qui, presentiamo un protocollo che dimostra l’uso dell’idrogel come struttura di coltura cellulare tridimensionale (3D) per la coltura di cellule staminali derivate dal tessuto adiposo (ADSC) e introduciamo la fotobiomodulazione (PBM) per migliorare la proliferazione di ADSC all’interno dell’ambiente di coltura 3D.

Abstract

Le cellule staminali derivate dal tessuto adiposo (ADSC), che possiedono caratteristiche mesenchimali multipotenti simili alle cellule staminali, sono spesso impiegate nella medicina rigenerativa grazie alla loro capacità di differenziazione cellulare e alla loro capacità di migliorare la migrazione, la proliferazione e mitigare l’infiammazione. Tuttavia, le ADSC spesso affrontano sfide nella sopravvivenza e nell’attecchimento all’interno delle ferite, principalmente a causa di condizioni infiammatorie sfavorevoli. Per affrontare questo problema, sono stati sviluppati idrogel per sostenere la vitalità dell’ADSC nelle ferite e accelerare il processo di guarigione delle ferite. Qui, abbiamo mirato a valutare l’impatto sinergico della fotobiomodulazione (PBM) sulla proliferazione e sulla citotossicità dell’ADSC all’interno di un quadro di coltura cellulare 3D. Gli ADSC immortalizzati sono stati seminati in idrogel da 10 μL ad una densità di 2,5 x 103 cellule e sottoposti a irradiazione utilizzando diodi da 525 nm e 825 nm a fluenze di 5 J/cm2 e 10 J/cm2. I cambiamenti morfologici, la citotossicità e la proliferazione sono stati valutati a 24 ore e 10 giorni dopo l’esposizione al PBM. Gli ADSC hanno mostrato una morfologia arrotondata e sono stati dispersi in tutto il gel come singole cellule o aggregati sferoidi. È importante sottolineare che sia il PBM che la struttura di coltura 3D non hanno mostrato effetti citotossici sulle cellule, mentre il PBM ha migliorato significativamente i tassi di proliferazione delle ADSC. In conclusione, questo studio dimostra l’uso dell’idrogel come ambiente 3D adatto per la coltura ADSC e introduce il PBM come una significativa strategia di aumento, affrontando in particolare i lenti tassi di proliferazione associati alla coltura cellulare 3D.

Introduction

Le ADSC sono cellule progenitrici mesenchimali multipotenti con la capacità di auto-rinnovarsi e differenziarsi in diverse linee cellulari. Queste cellule possono essere prelevate dalla frazione vascolare stromale (SVF) del tessuto adiposo durante una procedura di lipoaspirazione1. Le ADSC sono emerse come un tipo di cellule staminali ideale da utilizzare nella medicina rigenerativa perché queste cellule sono abbondanti, minimamente invasive da raccogliere, facilmente accessibili e ben caratterizzate2. La terapia con cellule staminali offre una possibile strada per la guarigione delle ferite stimolando la migrazione cellulare, la proliferazione, la neovascolarizzazione e riducendo l’infiammazione all’interno delle ferite 3,4. Circa l’80% della capacità rigenerativa delle ADSC è attribuibile alla segnalazione paracrina attraverso il loro secretoma5. In precedenza, è stato suggerito che un’iniezione locale diretta di cellule staminali o fattori di crescita nel tessuto danneggiato potrebbe illecito meccanismi di riparazione in vivo sufficienti 6,7,8. Tuttavia, questo approccio ha dovuto affrontare diverse sfide, come la scarsa sopravvivenza e la riduzione dell’attecchimento delle cellule staminali all’interno dei tessuti danneggiati a causa dell’ambiente infiammatorio 9. Inoltre, uno dei motivi citati era la mancanza di una matrice extracellulare per supportare la sopravvivenza e la funzionalità delle cellule trapiantate10. Per superare queste sfide, l’accento è ora posto sullo sviluppo di vettori di biomateriali per sostenere la vitalità e la funzione delle cellule staminali.

La coltura cellulare tridimensionale (3D) migliora l’interazione cellula-cellula e cellula-matrice in vitro per fornire un ambiente più simile all’ambiente in vivo 11. Gli idrogel sono stati ampiamente studiati come una classe di vettori di biomateriali che forniscono un ambiente 3D per la coltura di cellule staminali. Queste strutture sono costituite da acqua e polimeri reticolati12. L’incapsulamento delle ADSC in idrogel non ha praticamente alcun effetto citotossico sulle cellule durante la coltura, pur mantenendo la vitalità delle cellule6. Le cellule staminali coltivate in 3D dimostrano una maggiore ritenzione della loro staminalità e una migliore capacità di differenziazione13. Allo stesso modo, le ADSC con semi di idrogel hanno dimostrato una maggiore vitalità e una chiusura accelerata della ferita nei modelli animali14. Inoltre, l’incapsulamento dell’idrogel aumenta significativamente l’attecchimento e la ritenzione delle ADSC nelle ferite15,16. TrueGel3D è costituito da un polimero, alcol polivinilico o destrano, solidificato da un reticolante, ciclodestrina o polietilenglicole17. Il gel è un idrogel sintetico che non contiene prodotti di origine animale che possano interferire con gli esperimenti o innescare una reazione immunitaria durante il trapianto del gel in un paziente, imitando efficacemente una matrice extracellulare18. Il gel è completamente personalizzabile modificando la composizione e i singoli componenti. Può ospitare diverse cellule staminali e supportare la differenziazione di diversi tipi di cellule regolando la rigidità del gel19. I siti di attacco possono essere creati attraverso l’aggiunta di peptidi20. Il gel è degradabile dalla secrezione di metalloproteasi, consentendo la migrazione cellulare21. Infine, è chiaro e consente tecniche di imaging.

Il PBM è una forma minimamente invasiva e di facile esecuzione di terapia laser a basso livello utilizzata per stimolare i cromofori intracellulari. Diverse lunghezze d’onda suscitano effetti diversi sulle cellule22. La luce nella gamma dal rosso al vicino infrarosso stimola l’aumento della produzione di adenosina trifosfato (ATP) e di specie reattive dell’ossigeno (ROS) migliorando il flusso attraverso la catena di trasporto degli elettroni23. La luce nelle gamme blu e verde stimola i canali ionici dipendenti dalla luce, consentendo l’afflusso non specifico di cationi, come calcio e magnesio, nelle cellule, che è noto per migliorare la differenziazione24. L’effetto netto è la generazione di messaggeri secondari che stimolano la trascrizione di fattori che innescano processi cellulari a valle come la migrazione, la proliferazione e la differenziazione25. Il PBM può essere utilizzato per pre-condizionare le cellule a proliferare o differenziarsi prima di trapiantarle in un ambiente avverso, ad esempio tessuto danneggiato26. L’esposizione pre e post-trapianto di PBM (630 nm e 810 nm) di ADSC ha migliorato significativamente la vitalità e la funzione di queste cellule in vivo in un modello di ratto diabetico27. La medicina rigenerativa richiede un numero adeguato di cellule per un’efficace riparazione dei tessuti28. Nelle colture cellulari 3D, le ADSC sono state associate a tassi di proliferazione più lenti rispetto alle colture cellulari bidimensionali6. Tuttavia, il PBM può essere utilizzato per aumentare il processo di coltura cellulare 3D delle ADSC migliorando la vitalità, la proliferazione, la migrazione e la differenziazione29,30.

Protocol

NOTA: Vedere la Tabella dei materiali per i dettagli relativi a tutti i materiali, i reagenti e il software utilizzati in questo protocollo. Il protocollo è stato riassunto graficamente nella Figura 1. 1. Colture cellulari bidimensionali (2D) NOTA: Gli ADSC immortalizzati (1 x106 cellule) vengono conservati a -195,8 °C in azoto liquido in una fiala di crioconservazione contenente 1 mL di terr…

Representative Results

Per valutare la morfologia e ispezionare visivamente la densità cellulare degli idrogel, è stata utilizzata la microscopia inversa (Figura 2). Gli ADSC hanno mantenuto una morfologia arrotondata 24 ore dopo la semina e l’esposizione al PBM. Le cellule erano sparse in tutto il gel come cellule singole o in grappoli simili a grappoli d’uva. La morfologia è rimasta invariata dopo 10 giorni nella coltura 3D. Non è stata notata alcuna differenza definitiva nella morfologia tra i gruppi sperim…

Discussion

Le ADSC sono un tipo di cellula ideale da utilizzare per la medicina rigenerativa in quanto stimolano vari processi per aiutare la guarigione delle ferite 3,4. Tuttavia, ci sono diverse sfide che devono essere aggirate, ad esempio gli scarsi tassi di sopravvivenza e l’attecchimento inefficace delle cellule in un sito di lesione9. Le cellule immortalizzate sono state utilizzate come linea cellulare disponibile in commercio, in quanto posson…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Questa ricerca è stata finanziata dalla National Research Foundation of South Africa Thuthuka Instrument, numero di sovvenzione TTK2205035996; il Dipartimento di Scienza e Innovazione (DSI) ha finanziato l’African Laser Centre (ALC), numero di sovvenzione HLHA23X compito ALC-R007; il Consiglio delle Ricerche di Ateneo, bando numero 2022URC00513; l’iniziativa sudafricana delle cattedre di ricerca del Dipartimento di Scienza e Tecnologia (DST-NRF/SARChI), numero di sovvenzione 98337. Gli enti finanziatori non hanno avuto alcun ruolo nella progettazione dello studio, nella raccolta, nell’analisi, nell’interpretazione dei dati o nella stesura del manoscritto. Gli autori ringraziano l’Università di Johannesburg (UJ) e il Laser Research Centre (LRC) per l’uso delle strutture e delle risorse.

Materials

525 nm diode laser National Laser Centre of South Africa EN 60825-1:2007
825 nm diode laser National Laser Centre of South Africa SN 101080908ADR-1800
96 Well Strip Plates Sigma-Aldrich BR782301
Amphotericin B Sigma-Aldrich A2942 Antibiotic (0.5%; 0.5 mL)
CellTiter-Glo 3D Cell Viability Assay Promega G9681 ATP reagent, Proliferation assay Kit
Corning 2 mL External Threaded Polypropylene Cryogenic Vial Corning 430659 cryovial
CryoSOfree Sigma-Aldrich C9249 Cell freezing media
CytoTox96 Non-Radioactive Cytotoxicity Assay Promega G1780 Cytotoxicity reagent
Dulbecco’s Modified Eagle Media Sigma-Aldrich D5796 Basal medium (39 mL/44 mL)
FieldMate Laser Power Meter Coherent 1098297
Flat-bottomed Corning 96 well clear polystyrene plate Sigma-Aldrich CLS3370
Foetal bovine serum Biochrom S0615 Culture medium enrichment (5 mL; 10% / 10 mL; 20%)
Hanks Balanced Salt Solution (HBSS) Sigma-Aldrich H9394 Rinse solution
Heracell 150i CO2 incubator Thermo Scientific 51026280
Heraeus Labofuge 400 Thermo Scientific 75008371 Plate spinner for 96 well plates
Heraeus Megafuge 16R centrifuge ThermoFisher 75004270
Immortalized ADSCs ATCC ASC52Telo hTERT, ATCC SCRC-4000 Passage 37
Invitrogen Countess 3 Invitrogen AMQAX2000 Automated cell counter for Trypan Blue
Julabo TW20 waterbath Sigma-Aldrich Z615501 Waterbath used to warm media to 37 °C
Olympus CellSens Entry Olympus Version 3.2 (23706)  Imaging software: digital image acquisition
Olympus CKX41 Olympus SN9B02019 Inverted light microscope
Olympus SC30 camera Olympus SN57000530 Camera attached to inverted light microscope
Opaque-walled Corning 96 well solid polystyrene microplates Sigma-Aldrich CLS3912 Opaque well used for ATP luminescence
Penicillin-Streptomycin Sigma-Aldrich P4333 Antibiotic (0.5%; 0.5 mL)
SigmaPlot 12.0 Systat Software Incorporated
TrueGel3D – True3 Sigma-Aldrich TRUE3-1KT 10 µL
TrueGel3D Enzymatic Cell Recovery Solution Sigma-Aldrich TRUEENZ 01:20
Trypan Blue Stain Thermo Fisher – Invitrogen T10282 0.4% solution
TrypLE Select Enzyme (1x) Gibco 12563029 Cell detachment solution
Victor Nivo Plate Reader Perkin Elmer HH3522019094 Spectrophotometric plate reader

References

  1. Zuk, P. A., et al. Multilineage cells from human adipose tissue: Implications for cell-based therapies. Tissue Eng. 7 (2), 211-228 (2001).
  2. Yuan, X., et al. Strategies for improving adipose-derived stem cells for tissue regeneration. Burns Trauma. 10, (2022).
  3. Nilforoushzadeh, M. A., et al. Mesenchymal stem cell spheroids embedded in an injectable thermosensitive hydrogel: An in situ drug formation platform for accelerated wound healing. ACS Biomater Sci Eng. 6 (9), 5096-5109 (2020).
  4. Yang, M., et al. Thermosensitive injectable chitosan/collagen/β-glycerophosphate composite hydrogels for enhancing wound healing by encapsulating mesenchymal stem cell spheroids. ACS Omega. 5 (33), 21015-21023 (2020).
  5. Chimenti, I., et al. Relative roles of direct regeneration versus paracrine effects of human cardiosphere-derived cells transplanted into infarcted mice. Circ Res. 106 (5), 971-980 (2010).
  6. Hassan, W., Dong, Y., Wang, W. Encapsulation and 3d culture of human adipose-derived stem cells in an in-situ crosslinked hybrid hydrogel composed of peg-based hyperbranched copolymer and hyaluronic acid. Stem Cell Res Ther. 4 (2), 32 (2013).
  7. Wu, K. H., Mo, X. M., Han, Z. C., Zhou, B. Stem cell engraftment and survival in the ischemic heart. The Ann Thorac Surg. 92 (5), 1917-1925 (2011).
  8. Lee, K., Silva, E. A., Mooney, D. J. Growth factor delivery-based tissue engineering: General approaches and a review of recent developments. J R Soc Interface. 8 (55), 153-170 (2011).
  9. Koivunotko, E., et al. Angiogenic potential of human adipose-derived mesenchymal stromal cells in nanofibrillated cellulose hydrogel. Biomedicines. 10 (10), 2584 (2022).
  10. Dong, Y., et al. Injectable and tunable gelatin hydrogels enhance stem cell retention and improve cutaneous wound healing. Adv Funct Mater. 27 (24), 1606619 (2017).
  11. Tibbitt, M. W., Anseth, K. S. Hydrogels as extracellular matrix mimics for 3d cell culture. Biotechnol Bioeng. 103 (4), 655-663 (2009).
  12. Mantha, S., et al. Smart hydrogels in tissue engineering and regenerative medicine. Materials. 12 (20), 3323 (2019).
  13. Sung, T. -. C., et al. 3D culturing of human adipose-derived stem cells enhances their pluripotency and differentiation abilities. J Mater Sci Technol. 63, 9-17 (2021).
  14. Garg, R. K., et al. Capillary force seeding of hydrogels for adipose-derived stem cell delivery in wounds. Stem Cells Transl Med. 3 (9), 1079-1089 (2014).
  15. Kim, Y. M., et al. Adipose-derived stem cell-containing hyaluronic acid/alginate hydrogel improves vocal fold wound healing. Laryngoscope. 124 (3), E64-E72 (2014).
  16. Dong, Y., et al. Conformable hyaluronic acid hydrogel delivers adipose-derived stem cells and promotes regeneration of burn injury. Acta Biomater. 108, 56-66 (2020).
  17. Truegel3d hydrogel for 3d cell culture. Merck Available from: https://www.sigmaaldrich.com/ZA/en/technical-documents/technical-article/cell-culture-and-cell-culture-analysis/3d-cell-culture/truegel3d (2024)
  18. Braccini, S., Tacchini, C., Chiellini, F., Puppi, D. Polymeric hydrogels for in vitro 3d ovarian cancer modeling. Int J Mol Sci. 23 (6), 3265 (2022).
  19. Mashinchian, O., et al. In vivo transcriptomic profiling using cell encapsulation identifies effector pathways of systemic aging. eLife. 11, e57393 (2022).
  20. Matsushige, C., Xu, X., Miyagi, M., Zuo, Y. Y., Yamazaki, Y. Rgd-modified dextran hydrogel promotes follicle growth in three-dimensional ovarian tissue culture in mice. Theriogenology. 183, 120-131 (2022).
  21. Marx, V. How some labs put more bio into biomaterials. Nat Methods. 16 (5), 365-368 (2019).
  22. Marques, M. M. Photobiomodulation therapy weaknesses. Laser Dent Sci. 6 (3), 131-132 (2022).
  23. Hamblin, M. R. Mechanisms and mitochondrial redox signaling in photobiomodulation. Photochem Photobiol. 94 (2), 199-212 (2018).
  24. Chen, J., et al. Low-level controllable blue LEDs irradiation enhances human dental pulp stem cells osteogenic differentiation via transient receptor potential vanilloid 1. J Photochem Photobiol B. 233, 112472 (2022).
  25. Chang, S. -. Y., Carpena, N. T., Kang, B. J., Lee, M. Y. Effects of photobiomodulation on stem cells important for regenerative medicine. Med Lasers. 9 (2), 134-141 (2020).
  26. Bikmulina, P. Y., et al. Beyond 2d: Effects of photobiomodulation in 3d tissue-like systems. J Biomed Opt. 25 (4), 048001 (2020).
  27. Ahmadi, H., et al. Transplantation of photobiomodulation-preconditioned diabetic stem cells accelerates ischemic wound healing in diabetic rats. Stem Cell Res Ther. 11 (1), 494 (2020).
  28. Mao, A. S., Mooney, D. J. Regenerative medicine: Current therapies and future directions. Proc Natl Acad Sci U S A. 112 (47), 14452-14459 (2015).
  29. De Andrade, A. L. M., et al. Effect of photobiomodulation on the behaviour of mesenchymal stem cells in three-dimensional cultures. Lasers Med Sci. 38 (1), 221 (2023).
  30. Diniz, I. M., et al. Photobiomodulation of mesenchymal stem cells encapsulated in an injectable rhbmp4-loaded hydrogel directs hard tissue bioengineering. J Cell Physiol. 233 (6), 4907-4918 (2018).
  31. Carter, M., Shieh, J. C. . Guide to Research Techniques in Neuroscience. , (2015).
  32. Lutolf, M. P., et al. Synthetic matrix metalloproteinase-sensitive hydrogels for the conduction of tissue regeneration: Engineering cell-invasion characteristics. Proc Natl Acad Sci U S A. 100 (9), 5413-5418 (2003).
  33. Robledo, F., et al. Spheroids derived from the stromal vascular fraction of adipose tissue self-organize in complex adipose organoids and secrete leptin. Stem Cell Res Ther. 14 (1), 70 (2023).
  34. Landry, J., Freyer, J. P., Sutherland, R. M. Shedding of mitotic cells from the surface of multicell spheroids during growth. J Cell Physiol. 106 (1), 23-32 (1981).
  35. Bogacheva, M. S., et al. Differentiation of human pluripotent stem cells into definitive endoderm cells in various flexible three-dimensional cell culture systems: Possibilities and limitations. Front Cell Dev Biol. 9, 726499 (2021).
  36. Chen, X., Thibeault, S. L. Biocompatibility of a synthetic extracellular matrix on immortalized vocal fold fibroblasts in 3-d culture. Acta Biomater. 6 (8), 2940-2948 (2010).
  37. Crous, A., Van Rensburg, M. J., Abrahamse, H. Single and consecutive application of near-infrared and green irradiation modulates adipose derived stem cell proliferation and affect differentiation factors. Biochimie. 196, 225-233 (2022).
check_url/66616?article_type=t

Play Video

Cite This Article
Roets, B., Abrahamse, H., Crous, A. Three-Dimensional Cell Culture of Adipose-Derived Stem Cells in a Hydrogel with Photobiomodulation Augmentation. J. Vis. Exp. (206), e66616, doi:10.3791/66616 (2024).

View Video