Summary

具有光生物调节增强的水凝胶中脂肪来源干细胞的三维细胞培养

Published: April 05, 2024
doi:

Summary

在这里,我们提出了一个方案,演示了使用水凝胶作为脂肪来源干细胞 (ADSC) 培养的三维 (3D) 细胞培养框架,并引入光生物调节 (PBM) 以增强 ADSC 在 3D 培养环境中的增殖。

Abstract

脂肪干细胞 (ADSC) 具有类似于干细胞的多能间充质特性,由于其具有多种细胞分化的能力以及增强迁移、增殖和减轻炎症的能力,因此经常被用于再生医学。然而,ADSC在伤口内的存活和植入方面经常面临挑战,主要是由于不利的炎症条件。为了解决这个问题,已经开发了水凝胶来维持ADSC在伤口中的活力并加速伤口愈合过程。在这里,我们旨在评估光生物调节 (PBM) 在 3D 细胞培养框架内对 ADSC 增殖和细胞毒性的协同影响。将永生化的ADSC接种到密度为2.5 x 103 个细胞的10 μL水凝胶中,并使用525 nm和825 nm二极管以5 J/cm2 和10 J/cm2的流度进行照射。在 PBM 暴露后 24 小时和 10 天评估形态学变化、细胞毒性和增殖。ADSC表现出圆形形态,并作为单个细胞或球状聚集体分散在整个凝胶中。重要的是,PBM和3D培养框架均未显示出对细胞的细胞毒性作用,而PBM显著增强了ADSC的增殖速率。总之,本研究证明了使用水凝胶作为 ADSC 培养的合适 3D 环境,并引入了 PBM 作为一种重要的增强策略,特别是解决了与 3D 细胞培养相关的缓慢增殖速率。

Introduction

ADSC是间充质多能祖细胞,具有自我更新和分化成多个细胞谱系的能力。这些细胞可以在脂肪抽吸过程中从脂肪组织的基质血管部分 (SVF) 中收获1。ADSC已成为用于再生医学的理想干细胞类型,因为这些细胞含量丰富,收获微创,易于获取,并且表征良好2。干细胞疗法通过刺激细胞迁移、增殖、新生血管形成和减少伤口内的炎症,为伤口愈合提供了一种可能的途径 3,4。大约 80% 的 ADSC 再生能力可归因于通过其分泌组5 的旁分泌信号传导。以前,有人建议将干细胞或生长因子直接局部注射到受损组织中可以非法充分的体内修复机制6,7,8。然而,这种方法面临着一些挑战,例如由于炎症环境导致的存活率低和受损组织内干细胞植入减少 9。此外,引用的原因之一是缺乏细胞外基质来支持移植细胞的存活和功能10。为了克服这些挑战,现在的重点是开发生物材料载体,以支持干细胞的活力和功能。

三维 (3D) 细胞培养在体外增强了细胞间和细胞间与基质的相互作用,以提供更类似于体内环境的环境 11。水凝胶作为一类生物材料载体已被广泛研究,可为干细胞培养提供 3D 环境。这些结构由水和交联聚合物12制成。在培养过程中,将ADSC封装在水凝胶中对细胞几乎没有细胞毒性作用,同时保持细胞的活力6。在 3D 中培养的干细胞表现出增强的干性保留和更高的分化能力13。同样,水凝胶接种的ADSC在动物模型中显示出更高的活力和加速的伤口闭合14。此外,水凝胶包封显着增加了ADSC在伤口中的植入和保留15,16。TrueGel3D由聚乙烯醇或葡聚糖聚合物制成,通过交联剂(环糊精或聚乙二醇17)固化。该凝胶是一种合成水凝胶,不含任何动物产品,这些动物产品在将凝胶移植到患者体内时可能会干扰实验或引发免疫反应,同时有效地模拟细胞外基质18。凝胶完全可通过改变成分和单个成分进行定制。它可以容纳不同的干细胞,并通过调整凝胶的刚度来支持几种细胞类型的分化19。可以通过添加肽20来创建附着位点。凝胶可通过分泌金属蛋白酶降解,允许细胞迁移21。最后,它很清楚,允许成像技术。

PBM 是一种微创且易于执行的低水平激光疗法,用于刺激细胞内发色团。不同的波长对细胞产生不同的影响22.红色至近红外范围内的光通过增强通过电子传递链的通量来刺激增加三磷酸腺苷 (ATP) 和活性氧 (ROS) 的产生23。蓝色和绿色范围内的光刺激光门控离子通道,允许阳离子(如钙和镁)非特异性流入细胞,这已知可以增强分化24。净效应是次级信使的产生,这些信使刺激触发下游细胞过程(如迁移、增殖和分化)的因子的转录25。PBM可用于在将细胞移植到不利环境(例如受损组织)之前预处理细胞增殖或分化26。在糖尿病大鼠模型中,移植前和移植后 PBM(630 nm 和 810 nm)暴露 ADSC 显着增强了这些细胞在体内的活力和功能27。再生医学需要足够数量的细胞来有效修复组织28.在 3D 细胞培养中,与二维细胞培养相比,ADSC 的增殖速率较慢6。然而,PBM 可用于通过增强活力、增殖、迁移和分化来增强 ADSC 的 3D 细胞培养过程29,30

Protocol

注意:有关本协议中使用的所有材料、试剂和软件的详细信息 ,请参阅材料表 。该协议已在 图 1 中以图形方式总结。 1. 二维(2D)细胞培养 注意:永生化的ADSC(1×106 个细胞)在-195.8°C的液氮中储存在含有1mL细胞冷冻培养基的冷冻保存瓶中。 制备2D细胞回收培养基和2D培养瓶将 39 mL 基…

Representative Results

为了评估水凝胶的形态并目视检查细胞密度,使用反向显微镜(图2)。ADSCs在接种和PBM暴露后24小时保持圆形形态。这些细胞以单个细胞或葡萄状簇的形式散布在整个凝胶中。3D培养10天后形态无变化。实验组和对照组之间或不同实验组之间在形态学上没有明确的差异。 为了评估PBM暴露和使用水凝胶进行3D培养的细胞毒性作用,测量了LDH泄漏(<strong class="…

Discussion

ADSC是用于再生医学的理想细胞类型,因为它们会刺激各种过程以帮助伤口愈合3,4。然而,有几个挑战需要规避,例如,存活率低和细胞在损伤部位的植入无效9.永生化细胞被用作市售细胞系,因为与原代细胞相比,它们可以传代更多代,不需要收获,表征良好,并且是同质群体,确保结果一致31。本研究的目的是使用…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项研究由南非国家研究基金会 Thuthuka Instrument 资助,资助号为 TTK2205035996;科学与创新部 (DSI) 资助的非洲激光中心 (ALC),拨款编号HLHA23X任务 ALC-R007;大学研究委员会,资助号 2022URC00513;科学技术部的南非研究主席计划(DST-NRF/SARChI),批准号98337。资助机构在研究设计、收集、分析、数据解释或撰写手稿方面没有发挥任何作用。作者感谢约翰内斯堡大学(UJ)和激光研究中心(LRC)使用这些设施和资源。

Materials

525 nm diode laser National Laser Centre of South Africa EN 60825-1:2007
825 nm diode laser National Laser Centre of South Africa SN 101080908ADR-1800
96 Well Strip Plates Sigma-Aldrich BR782301
Amphotericin B Sigma-Aldrich A2942 Antibiotic (0.5%; 0.5 mL)
CellTiter-Glo 3D Cell Viability Assay Promega G9681 ATP reagent, Proliferation assay Kit
Corning 2 mL External Threaded Polypropylene Cryogenic Vial Corning 430659 cryovial
CryoSOfree Sigma-Aldrich C9249 Cell freezing media
CytoTox96 Non-Radioactive Cytotoxicity Assay Promega G1780 Cytotoxicity reagent
Dulbecco’s Modified Eagle Media Sigma-Aldrich D5796 Basal medium (39 mL/44 mL)
FieldMate Laser Power Meter Coherent 1098297
Flat-bottomed Corning 96 well clear polystyrene plate Sigma-Aldrich CLS3370
Foetal bovine serum Biochrom S0615 Culture medium enrichment (5 mL; 10% / 10 mL; 20%)
Hanks Balanced Salt Solution (HBSS) Sigma-Aldrich H9394 Rinse solution
Heracell 150i CO2 incubator Thermo Scientific 51026280
Heraeus Labofuge 400 Thermo Scientific 75008371 Plate spinner for 96 well plates
Heraeus Megafuge 16R centrifuge ThermoFisher 75004270
Immortalized ADSCs ATCC ASC52Telo hTERT, ATCC SCRC-4000 Passage 37
Invitrogen Countess 3 Invitrogen AMQAX2000 Automated cell counter for Trypan Blue
Julabo TW20 waterbath Sigma-Aldrich Z615501 Waterbath used to warm media to 37 °C
Olympus CellSens Entry Olympus Version 3.2 (23706)  Imaging software: digital image acquisition
Olympus CKX41 Olympus SN9B02019 Inverted light microscope
Olympus SC30 camera Olympus SN57000530 Camera attached to inverted light microscope
Opaque-walled Corning 96 well solid polystyrene microplates Sigma-Aldrich CLS3912 Opaque well used for ATP luminescence
Penicillin-Streptomycin Sigma-Aldrich P4333 Antibiotic (0.5%; 0.5 mL)
SigmaPlot 12.0 Systat Software Incorporated
TrueGel3D – True3 Sigma-Aldrich TRUE3-1KT 10 µL
TrueGel3D Enzymatic Cell Recovery Solution Sigma-Aldrich TRUEENZ 01:20
Trypan Blue Stain Thermo Fisher – Invitrogen T10282 0.4% solution
TrypLE Select Enzyme (1x) Gibco 12563029 Cell detachment solution
Victor Nivo Plate Reader Perkin Elmer HH3522019094 Spectrophotometric plate reader

References

  1. Zuk, P. A., et al. Multilineage cells from human adipose tissue: Implications for cell-based therapies. Tissue Eng. 7 (2), 211-228 (2001).
  2. Yuan, X., et al. Strategies for improving adipose-derived stem cells for tissue regeneration. Burns Trauma. 10, (2022).
  3. Nilforoushzadeh, M. A., et al. Mesenchymal stem cell spheroids embedded in an injectable thermosensitive hydrogel: An in situ drug formation platform for accelerated wound healing. ACS Biomater Sci Eng. 6 (9), 5096-5109 (2020).
  4. Yang, M., et al. Thermosensitive injectable chitosan/collagen/β-glycerophosphate composite hydrogels for enhancing wound healing by encapsulating mesenchymal stem cell spheroids. ACS Omega. 5 (33), 21015-21023 (2020).
  5. Chimenti, I., et al. Relative roles of direct regeneration versus paracrine effects of human cardiosphere-derived cells transplanted into infarcted mice. Circ Res. 106 (5), 971-980 (2010).
  6. Hassan, W., Dong, Y., Wang, W. Encapsulation and 3d culture of human adipose-derived stem cells in an in-situ crosslinked hybrid hydrogel composed of peg-based hyperbranched copolymer and hyaluronic acid. Stem Cell Res Ther. 4 (2), 32 (2013).
  7. Wu, K. H., Mo, X. M., Han, Z. C., Zhou, B. Stem cell engraftment and survival in the ischemic heart. The Ann Thorac Surg. 92 (5), 1917-1925 (2011).
  8. Lee, K., Silva, E. A., Mooney, D. J. Growth factor delivery-based tissue engineering: General approaches and a review of recent developments. J R Soc Interface. 8 (55), 153-170 (2011).
  9. Koivunotko, E., et al. Angiogenic potential of human adipose-derived mesenchymal stromal cells in nanofibrillated cellulose hydrogel. Biomedicines. 10 (10), 2584 (2022).
  10. Dong, Y., et al. Injectable and tunable gelatin hydrogels enhance stem cell retention and improve cutaneous wound healing. Adv Funct Mater. 27 (24), 1606619 (2017).
  11. Tibbitt, M. W., Anseth, K. S. Hydrogels as extracellular matrix mimics for 3d cell culture. Biotechnol Bioeng. 103 (4), 655-663 (2009).
  12. Mantha, S., et al. Smart hydrogels in tissue engineering and regenerative medicine. Materials. 12 (20), 3323 (2019).
  13. Sung, T. -. C., et al. 3D culturing of human adipose-derived stem cells enhances their pluripotency and differentiation abilities. J Mater Sci Technol. 63, 9-17 (2021).
  14. Garg, R. K., et al. Capillary force seeding of hydrogels for adipose-derived stem cell delivery in wounds. Stem Cells Transl Med. 3 (9), 1079-1089 (2014).
  15. Kim, Y. M., et al. Adipose-derived stem cell-containing hyaluronic acid/alginate hydrogel improves vocal fold wound healing. Laryngoscope. 124 (3), E64-E72 (2014).
  16. Dong, Y., et al. Conformable hyaluronic acid hydrogel delivers adipose-derived stem cells and promotes regeneration of burn injury. Acta Biomater. 108, 56-66 (2020).
  17. Truegel3d hydrogel for 3d cell culture. Merck Available from: https://www.sigmaaldrich.com/ZA/en/technical-documents/technical-article/cell-culture-and-cell-culture-analysis/3d-cell-culture/truegel3d (2024)
  18. Braccini, S., Tacchini, C., Chiellini, F., Puppi, D. Polymeric hydrogels for in vitro 3d ovarian cancer modeling. Int J Mol Sci. 23 (6), 3265 (2022).
  19. Mashinchian, O., et al. In vivo transcriptomic profiling using cell encapsulation identifies effector pathways of systemic aging. eLife. 11, e57393 (2022).
  20. Matsushige, C., Xu, X., Miyagi, M., Zuo, Y. Y., Yamazaki, Y. Rgd-modified dextran hydrogel promotes follicle growth in three-dimensional ovarian tissue culture in mice. Theriogenology. 183, 120-131 (2022).
  21. Marx, V. How some labs put more bio into biomaterials. Nat Methods. 16 (5), 365-368 (2019).
  22. Marques, M. M. Photobiomodulation therapy weaknesses. Laser Dent Sci. 6 (3), 131-132 (2022).
  23. Hamblin, M. R. Mechanisms and mitochondrial redox signaling in photobiomodulation. Photochem Photobiol. 94 (2), 199-212 (2018).
  24. Chen, J., et al. Low-level controllable blue LEDs irradiation enhances human dental pulp stem cells osteogenic differentiation via transient receptor potential vanilloid 1. J Photochem Photobiol B. 233, 112472 (2022).
  25. Chang, S. -. Y., Carpena, N. T., Kang, B. J., Lee, M. Y. Effects of photobiomodulation on stem cells important for regenerative medicine. Med Lasers. 9 (2), 134-141 (2020).
  26. Bikmulina, P. Y., et al. Beyond 2d: Effects of photobiomodulation in 3d tissue-like systems. J Biomed Opt. 25 (4), 048001 (2020).
  27. Ahmadi, H., et al. Transplantation of photobiomodulation-preconditioned diabetic stem cells accelerates ischemic wound healing in diabetic rats. Stem Cell Res Ther. 11 (1), 494 (2020).
  28. Mao, A. S., Mooney, D. J. Regenerative medicine: Current therapies and future directions. Proc Natl Acad Sci U S A. 112 (47), 14452-14459 (2015).
  29. De Andrade, A. L. M., et al. Effect of photobiomodulation on the behaviour of mesenchymal stem cells in three-dimensional cultures. Lasers Med Sci. 38 (1), 221 (2023).
  30. Diniz, I. M., et al. Photobiomodulation of mesenchymal stem cells encapsulated in an injectable rhbmp4-loaded hydrogel directs hard tissue bioengineering. J Cell Physiol. 233 (6), 4907-4918 (2018).
  31. Carter, M., Shieh, J. C. . Guide to Research Techniques in Neuroscience. , (2015).
  32. Lutolf, M. P., et al. Synthetic matrix metalloproteinase-sensitive hydrogels for the conduction of tissue regeneration: Engineering cell-invasion characteristics. Proc Natl Acad Sci U S A. 100 (9), 5413-5418 (2003).
  33. Robledo, F., et al. Spheroids derived from the stromal vascular fraction of adipose tissue self-organize in complex adipose organoids and secrete leptin. Stem Cell Res Ther. 14 (1), 70 (2023).
  34. Landry, J., Freyer, J. P., Sutherland, R. M. Shedding of mitotic cells from the surface of multicell spheroids during growth. J Cell Physiol. 106 (1), 23-32 (1981).
  35. Bogacheva, M. S., et al. Differentiation of human pluripotent stem cells into definitive endoderm cells in various flexible three-dimensional cell culture systems: Possibilities and limitations. Front Cell Dev Biol. 9, 726499 (2021).
  36. Chen, X., Thibeault, S. L. Biocompatibility of a synthetic extracellular matrix on immortalized vocal fold fibroblasts in 3-d culture. Acta Biomater. 6 (8), 2940-2948 (2010).
  37. Crous, A., Van Rensburg, M. J., Abrahamse, H. Single and consecutive application of near-infrared and green irradiation modulates adipose derived stem cell proliferation and affect differentiation factors. Biochimie. 196, 225-233 (2022).
check_url/66616?article_type=t

Play Video

Cite This Article
Roets, B., Abrahamse, H., Crous, A. Three-Dimensional Cell Culture of Adipose-Derived Stem Cells in a Hydrogel with Photobiomodulation Augmentation. J. Vis. Exp. (206), e66616, doi:10.3791/66616 (2024).

View Video