Summary

体外骨骼肌微血管制备离体血管反应性的调查

Published: April 28, 2012
doi:

Summary

一个<em>体外</em>编制说明两个血管反应性血管活性物质的刺激和通过被动墙力学的基本结构性能评估的审讯股薄肌的最大阻力小动脉的隔离。

Abstract

隔离的微血管准备是体外制备,允许考试因素的控制血管直径的不同贡献,因此,灌注阻力1-5。这是一个经典的实验准备,在很大程度上,最初是由内田 15,几十年以前。这最初的描述提供了进行了广泛的修改和提高,主要是在实验室的布赖恩博士杜陵在弗吉尼亚6-8大学,技术的基础上,我们提出了电流的方法,在下面的网页。这种准备,具体是指在大鼠作为首选微血管纤细的动脉,但基本的准备,可以很容易地应用到几乎任何其他组织或器官9-13跨物种隔离的船只。机械(即二维)在孤立的微血管的变化,可以很容易地评估在浩如烟海的生理(例如,缺氧,血管内的压力,或剪切)或药理的挑战,并能提供洞察到机械元素组成一个完整的综合措施,虽然体外 ,组织响应。这种方法的意义是,它允许简便操作的影响微血管直径的综合调控,同时也让许多从其他来源,包括血管内压力(生肌),自主支配,血流动力学的贡献控制(例如,剪切应力),内皮依赖或独立的刺激,激素,实质影响,提供了部分清单。在适当的实验条件和适当的目标,这可以作为一个优势在体内原位组织/器官的筹备工作,不轻易让浅显的控制更广泛的系统性变量。

马约旦基本上是该制剂的限制其优势的结果。根据定义,这些船只的行为被许多最重要的贡献者调节血管阻力已被删除,包括神经,体液免疫,代谢,因此等的条件下,研究,研究者应注意避免过度所收集的数据利用这个准备的解释和推断。该制剂方面关心的其他重要领域,它可以很容易损坏,如内皮衬里或血管平滑肌细胞成分,如变量的错误源可以被引入。强烈建议,个别研究者利用,以确保该制剂的质量,无论是在实验开始,并定期在整个协议的过程中适当的测量。

Protocol

1。实验前实验一天前,站适当尺寸的玻璃毛细管拉成微电极(无论是水平或垂直的车夫,都可以使用)。尖端直径可以根据被隔离的船只随时调整,虽然我们通常使用直径范围50-150微米之间。这些微血管站了以下丁烷火焰加热到适当的配置,然后弯曲。微量提示身体打破近似直径(用细镊子)微血管中的问题,可以适当的构象,如针对特定应用所需的研磨或抛光。读者对这些程序的广泛?…

Discussion

提出的协议描述的骨骼肌微血管隔离,清除和双插管,虽然这一般技术可以很容易地适用于大多数组织。对于当前的手稿,“动脉”一词已被用于由作者来形容一个阻力血管直径在70-120微米休息积极的基调下,这也是一个主要因素调节器官灌注阻力或之间不等组织。

一些修改,这个系统可以安装多个应用程序的具体调查,并随时可以提供更深入的实验(例如,17膜电?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作是由美国心脏协会(EIA 0740129N)和NIH的T32 HL90610支持。

Materials

Reagents and Equipment Company Comments/Catalogue #
Vessel Chamber Custom Dave Eick (MCW)
Heated Circulating Water Bath PolyScience and Haake Haake DC 10
Pipets Frederick Haer & Co. Capillary Tubing 2.0 mm OD x 1.0 mm ID (27-33-1)
Pressure Monitor World Precision Instruments  
Water Jacketed Reservoir Custom  
External Light Source World Precision Instruments Novaflex
Pipet Puller MicroData Instruments PMP102 Micropipet Puller
Full complement of surgical tools Fine Science Tools Dumont
Ultra Fine Forceps Fine Science Tools Inox #5
Silk Suture Thread Ethilon #10-0 or 9-0
Stereo Microscope Olympus Olympus SZ-11
Analog Video Calipers Boeckeler Via Controller (Via-100)
High Resolution Analog Camera Panasonic GP-MF 602
Oxygen Tank Regional 21% balance nitrogen and 5% CO2 balance nitrogen
Tubing Tygon  
Drain Pump Cole Parmer Instrument Co.  
Modified Rat PSS See recipe below  
Van Breemen’s Relaxant PSS See recipe below  

Table 1. A list of the major components of isolated microvessel station setup presented in the Figures.

Modified Rat PSS Recipe To make two liters of PSS 20X Salt Stock (2L) 20X Buffer Stock (2L)
NaCl   278.0 g  
KCl   14.0 g  
MgSO4-7H2O   11.5 g  
CaCl2-H2O   9.4 g  
NaHCO3     80.8 g
EDTA     0.4 g
NaH2PO4 0.28 g    
Glucose 1.98 g    
20x Salt Stock 100 mL    
20x Buffer Stock 100 mL    
Distilled Water 1800 mL    

Table 2. Recipe for standard physiological salt solution (PSS) used in the isolated microvessel protocols.

Comments on Recipe: Make 2 L of Salt Stock and 2 L of Buffer Stock. These can be refrigerated when not being used, but shake them well and often before preparing PSS. The additional ingredients are added at the time of preparation of final PSS.

Van Breemen’s Relaxant PSS To make 2 liters of PSS 20X Salt Stock (1L) 20X Buffer Stock (1L)
NaCl   107.4 g  
KCl   7.0 g  
MgSO4-7H2O   5.76 g  
MgCl2-6H2O   81.32 g  
NaHCO3     40.4 g
EDTA     0.2 g
EGTA     15.22
NaH2PO4 0.28 g    
Glucose 1.98 g    
20x Salt Stock 100 mL    
20x Buffer Stock 100 mL    
Distilled Water 1800 mL    

Table 3. Recipe for Van Breemen’s relaxant physiological salt solution (PSS) used in the isolated microvessel protocols under conditions of zero active tone.

Comments on Recipe: Make 1 L of Salt Stock and 1 L of Buffer Stock. These can be refrigerated when not being used, but shake them well and often before preparing PSS. The additional ingredients are added at the time of preparation of final relaxant PSS.

References

  1. Goodwill, A. G., Frisbee, S. J., Stapleton, P. A., James, M. E., Frisbee, J. C. Impact of Chronic Anticholesterol Therapy on Development of Microvascular Rarefaction in the Metabolic Syndrome. Microcirculation. , 1-18 (2009).
  2. Goodwill, A. G., James, M. E., Frisbee, J. C. Increased vascular thromboxane generation impairs dilation of skeletal muscle arterioles of obese Zucker rats with reduced oxygen tension. Am. J. Physiol. Heart Circ. Physiol. 295, H1522-H1528 (2008).
  3. Samora, J. B., Frisbee, J. C., Boegehold, M. A. Growth-dependent changes in endothelial factors regulating arteriolar tone. Am. J. Physiol. Heart Circ. Physiol. 292, H207-H214 (2007).
  4. Samora, J. B., Frisbee, J. C., Boegehold, M. A. Hydrogen peroxide emerges as a regulator of tone in skeletal muscle arterioles during juvenile growth. Microcirculation. 15, 151-161 (2008).
  5. Samora, J. B., Frisbee, J. C., Boegehold, M. A. Increased myogenic responsiveness of skeletal muscle arterioles with juvenile growth. Am. J. Physiol. Heart Circ. Physiol. 294, 2344-2351 (2008).
  6. Dacey, R. G., Duling, B. R. A study of rat intracerebral arterioles: methods, morphology, and reactivity. Am. J. Physiol. Heart Circ. Physiol. 243, H598-H606 (1982).
  7. Fredricks, K. T., Liu, Y., Lombard, J. H. Response of extraparenchymal resistance arteries of rat skeletal muscle to reduce PO2. Am. J. Physiol. 267, H706-H715 (1994).
  8. Durand, M. J., Raffai, G., Weinberg, B. D., Lombard, J. H. Angiotensin-(1-7) and low-dose angiotensin II infusion reverse salt-induced endothelial dysfunction via different mechanisms in rat middle cerebral arteries. Am. J. Physiol. Heart Circ. Physiol. 299, H1024-H1033 (2010).
  9. LeBlanc, A. J., Cumpston, J. L., Chen, B. T., Frazer, D., Castranova, V., Nurkiewicz, T. R. Nanoparticle inhalation impairs endothelium-dependent vasodilation in subepicardial arterioles. J. Toxicol. Environ. Health A. 72, 1576-1584 (2009).
  10. Jernigan, N. L., LaMarca, B., Speed, J., Galmiche, L., Granger, J. P., Drummond, H. A. Dietary salt enhances benzamil-sensitive component of myogenic constriction in mesenteric arteries. Am. J. Physiol. Heart Circ. Physiol. 294, H409-H420 (2008).
  11. Stapleton, P. A., Goodwill, A. G., James, M. E., Frisbee, J. C. Altered mechanisms of endothelium-dependent dilation in skeletal muscle arterioles with genetic hypercholesterolemia. Am. J. Physiol. Regul. Integr. Comp. Physiol. 293, R1110-R1119 (2007).
  12. Goodwill, A. G., Stapleton, P. A., James, M. E., d’Audiffret, A. C., Frisbee, J. C. Increased arachidonic acid-induced thromboxane generation impairs skeletal muscle arteriolar dilation with genetic dyslipidemia. Microcirculation. 15, 621-631 (2008).
  13. Baumbach, G. L., Hadju, M. A. Mechanics and composition of cerebral arterioles in renal and spontaneously hypertensive rats. Hypertension. 21, 816-826 (1993).
  14. Uchida, E., Bohr, D. F., Hoobler, S. W. A method for studying isolated resistance vessel from rabbit mesentery and brain and their responses to drugs. Circ. Res. 4, 525-536 (1967).
  15. Davis, M. J., Kuo, L., Chilian, W. M., Muller, J. M. I. s. o. l. a. t. e. d., Barker, J. H., Anderson, G. L., Menger, M. D. Chapter 23. Isolated, perfused microvessels. In: Clinically Applied Microcirculation Research. 32, 435-456 (1995).
  16. Lombard, J. H., Liu, Y., Fredricks, K. T., Bizub, D. M., Roman, R. J., Rusch, N. J. Electrical and mechanical responses of rat middle cerebral arterieal to reduced PO2 and prostacyclin. Am. J. Physiol. 276, H509-H516 (1994).
check_url/cn/3674?article_type=t

Play Video

Cite This Article
Butcher, J. T., Goodwill, A. G., Frisbee, J. C. The ex vivo Isolated Skeletal Microvessel Preparation for Investigation of Vascular Reactivity. J. Vis. Exp. (62), e3674, doi:10.3791/3674 (2012).

View Video