Summary

高分辨率基因表达谱RNA的合成,加工和衰变的新转录RNA在细胞培养的代谢标记

Published: August 08, 2013
doi:

Summary

细胞总RNA提供了一种用于研究的短期变化,以及在RNA合成和衰变动力学的RNA加工模板差。这里,我们描述遵循与4 – thiouridine的新转录的RNA的代谢标记通过硫醇特异性的生物素化和纯化的新转录的RNA,来克服这些限制。

Abstract

全转录组的芯片和新一代测序的发展已经彻底改变了我们的细胞基因表达的复杂性的理解。随着更好地理解所涉及的分子机制,底层动力学的精确测量变得越来越重要。在这里,这些有力的方法面临的主要限制,因为他们学习的模板样本, 细胞总RNA的内在属性。在许多情况下,细胞总RNA发生变化,要么过慢或过快,代表潜在的分子事件和动力学有足够的分辨率。此外,RNA的合成,加工,和衰减的贡献改变不容易区分。

我们最近开发高分辨率基因表达谱来克服这些限制。我们的做法是根据新转录RNA代谢标记4 thiouri用餐(因此也称为4SU标记),然后通过严格的纯化的新转录的RNA,使用硫醇特异性的生物素和链霉亲和素包被的磁珠。它是适用于范围广泛的生物体包括脊椎动物, 果蝇 ,酵母或细菌。我们成功地应用于4SU标记实时动力学研究转录因子的活动,提供精确的测量RNA半衰期,到RNA加工的动力学,并取得了新的见解。最后,计算模型可以被用来产生一个综合的,全面的分析,潜在的分子机制。

Introduction

基因表达谱是一个关键的工具,用来研究细胞过程和相关的复杂的相互作用网络。 mRNA丰度的研究,通常的首选方法,以获得基本的洞察潜在的分子机制。全转录组微阵列1和,最近,新一代的RNA测序(RNA-SEQ)2-4的发展助长了这种方法。虽然这些技术已经彻底改变了我们的细胞基因表达的复杂性的理解,他们面临着由于细胞总RNA模板样本, 内在性能的主要限制。首先,短期变动的总RNA水平不相匹配的转录率的变化,但本质上是依赖于各自的转录的RNA的半衰期。虽然五倍一个短命的成绩单, 编码转录因子的诱导,将随时检测总RNA中在一个小时之内,同样的一项长期的成绩单, 例如编码一种代谢酶的诱导,仍将几乎看不见。另外,即使是一个完整的关机的转录率的平均基因的RNA的5个小时的半衰期(> 1000倍的下调)将简单地需要5个小时,它的总的RNA水平降低仅由两方面。因此,总RNA的分析有利于短命的转录调节的检测,其中有许多编码的转录因子和基因监管的功能5。此外,调节掩盖真正的动能级联和主要信号事件的不能从二级分化的。 ,反过来,可能会导致大量的偏见在下游的生物信息学分析。其次,总RNA水平的改变不能被改变RNA的合成或腐烂。后者需要测量细胞侵袭的方法, 例如阻断transcripti使用6,放线菌素D和扩展监控正在进行的RNA随着时间的推移衰减。平均mRNA的半衰期在哺乳动物细胞中的5 – 10小时5,7,大多数基因的mRNA水平的减少小于双重转录停止在几个小时后。在这些相当小的差异,导致在大多数由于基本的数学方程的指数性质的细胞基因的mRNA的半衰期非常不精确的测量。最后,当细胞总RNA的RNA-seq中透露,大约有一半是我们的基因选择性剪接事件,底层动力学以及动力机制仍然知之甚少,指导组织和上下文特定的调控RNA加工。此外,贡献差异表达基因的RNA加工,特别是对于非编码RNA,仍有待确定。总而言之,这些限制主要障碍生物信息学动力学建模相关的分子机制。

我们最近开发出一种方法,称为高分辨率基因表达谱,以克服这些问题5,7,9。它是基于使用4 thiouridine(4SU标记),一种自然发生的尿嘧啶核苷衍生物的新转录RNA代谢标记,并提供直接访问新转录转录以最小的干扰细胞生长和基因表达( 见图1)5, 10-12。曝光的真核细胞快速吸收4SU磷酸,磷酸化,并纳入新转录RNA 4SU结果。细胞总RNA的分离,4SU标记的RNA部分是巯基的特异性生物素化的生物素和新转录的RNA之间产生一个二硫键。 “细胞总RNA'然后可以进行定量分离成标记(”新转录“)和未标记的('预existin的克)RNA具有高纯度,使用链霉亲和素包被的磁珠。最后,标记的RNA回收从有孔玻璃珠,通过简单地增加裂解二硫键的还原剂( 二硫苏糖醇)和释放从有孔玻璃珠的新转录的RNA。

新转录的RNA描绘每一个基因的转录活性4SU曝光的时段内。 4SU ​​标记分钟的时间表,从而提供了一个快照图片真核生物基因表达和理想的模板,下游的生物信息学分析( 启动子分析)。在稳态条件下可以假设的情况下,新转录/总的比例,新转录/未标记的未标记/,总RNA提供非侵入性的访问精确RNA半衰期7,13。此外,重要的是要注意4SU标记只需5分钟(5分钟4SU RNA)纯化后,新转录的RNA是年龄小于15分钟和60分钟4SU-RNA。当进行超短逐步不再4SU标记的RNA-seq的结合在一个单一的实验设置,RNA加工的动力学透露核苷酸分辨率9。最后,时间过程分析与计算模型相结合的新的转录总RNA允许RNA合成的综合分析和衰减14。

总之,该方法可以直接分析RNA的合成,处理,并在真核细胞中的降解动力学。这是适用于所有主要模式生物,包括哺乳动物,昆虫( 果蝇 ),两栖类( 爪蟾 )和酵母5,15,16。这是直接兼容微阵列分析5,17,9,13,14 RNA定序,适用于体内 12,15。在这里,我们详细的方法,在培养的哺乳动物细胞中的标签,隔离和净化新转录RNA。此外,电位人的问题和缺陷进行了讨论。

Protocol

1。代谢标记4 thiouridine 实验装置的详细计划/调度, 例如 ,当添加4SU细胞培养和收获样品。计划在每个条件之间的至少5分钟。只有一个条件处理细胞的时间。处理最大。在一个给定的时间3 – 5个菜。尽可能快地处理细胞,以尽量减少在温度和CO 2水平的变化。避免明亮的光线后的细胞暴露4SU增加,因为这可能导致4SU标记的RNA的细胞蛋白的交联。 <p class="jove_ste…

Representative Results

1。原料,预期产量经过1小时(小时)4SU曝光新转录RNA约占1 – 4%的细胞总RNA。这将是较低的,因为他们生长被捕细胞不再合成RNA占细胞生长/复制。贴标签时1小时,我们建议60 – 80微克总RNA开始检测。小于30微克总RNA的小RNA颗粒生物素化步骤,是很难看后开始,因此可以很容易丢失。输入RNA水平可能会增加多达150微克的持续时间很短标签( 如 5 – 10分钟)。当RNA标记的?…

Discussion

新转录RNA代谢标记大幅提高电源的高通量技术,如芯片和RNA-SEQ提供更合适的模板来解决生物学问题的兴趣。本议定书进行了广泛的优化。它允许新转录RNA> 1000倍浓缩,并提供高度可重复性的结果。

4SU​​标记实验的实验设计是至关重要的新转录的RNA,将描绘仅在4SU细胞的曝光时间的实时的转录活性。如果刺激后转录率的实际变化已经消退,这些都将错过新转录RNA进行分析…

Disclosures

The authors have nothing to disclose.

Acknowledgements

我们想感谢阿米里根仔细阅读的手稿。支持这项工作是由NGFN加授#01GS0801,MRC奖学金授予G1002523 NHSBT授予WP11-05,LD和DFG授予FR2938/1-1 CCF

Materials

Name Company Catalog Number Comments
4-thiouridine Carbosynth T4509 Prepare 50 mM stock in sterile H2O, store at -20 °C in aliquots of 50-500 μl, discard unused reagent, do not refreeze.
Trizol Invitrogen 15596026 (100 ml), 15596018 (200 ml) WARNING – CORROSIVE and HAZARDOUS TO HEALTH! Ensure immediate access to Phenol antidote (PEG-Methanol); Store at 4 °C.
Chloroform Sigma 372978 WARNING – HAZARDOUS TO HEALTH
Isopropanol Sigma 650447
Sodium citrate, nuclease-free Sigma C8532 Prepare 1.6 M stock solution using nuclease-free water.
5M nuclease-free NaCl Sigma 71386 Stock solution
Nuclease-free H2O Sigma W4502 Make 1 ml aliquots in nuclease-free tubes.
RNA precipitation buffer 1.2 M NaCl, 0.8 M sodium citrate in nuclease free water. Prepare in advance under strictly nuclease-free conditions. Store at room temperature in 50 ml falcon tubes.
Ethanol Sigma 459844 Use with nuclease-free water to prepare 80% ethanol, store at -20 °C.
1 M nuclease-free Tris Cl, pH 7.5 Lonza 51237 Stock solution
500 mM nuclease-free EDTA, pH 8.0 Invitrogen 15575-020 Stock solution
10x Biotinylation Buffer (BB) 100 mM Tris pH 7.4, 10 mM EDTA in nuclease-free water, make aliquots of 1 ml.
Dimethylformamide (DMF) Sigma D4551
EZ-Link biotin-HPDP Pierce 21341 Prepare 1 mg/ml stock solution by dissolving 50 mg biotin-HPDP in 50 ml DMF. Gentle warming enhances solubilisation. Store at 4 °C in aliquots of 1 ml.
Phase Lock Gel Heavy tubes 2.0 ml Eppendorf 0032 005.152 Optional for the chloroform extraction step.
Zeta membrane BIORAD 162-0153
10x Dot blot binding buffer 100 mM NaOH, 10 mM EDTA
Biotin-oligo 5′-biotin, 25 nucleotides, any sequence
Sodium dodecyl sulphate Fisher BPE9738 For 100 ml 20% stock solution, add 20 g SDS to 80 ml PBS pH 7-8 and adjust volume to 100 ml. Keep all high-percentage SDS solutions above 20 °C. Warm the solutions slightly should SDS precipitate.
EZ-Link Iodoacetyl-LC-Biotin Pierce 21333 Prepare 1 mg/ml stock solution by dissolving 50 mg iodoacetyl-biotin in 50 ml DMF. Gentle warming enhances solubilisation. Store at 4 °C in aliquots of 1 ml. Generates irreversible, thiol-specific biotinylation.
Phosphate buffer saline Gibco 10010-015
Dot blot blocking buffer Mix 20 ml 20% SDS with 20 ml 1 x PBS pH 7-8 and add EDTA to the final concentration of 1 mM.
Streptavidin-horseradish peroxidase Vector Laboratories SA5004 Store at -20 °C. Mix 10 ml 20% SDS with 10 ml 1 x PBS. Add 20 μl Streptavidin-HRP before use.
ECL reagent GE Healthcare RNP2109 Use following the manufacturer’s instructions.
Super RX, X-RA Film, 18×24 cm Fujifilm 47410 19236
μMacs Streptavidin Kit Miltenyi 130-074-101 Store the beads at 4 °C.
Tween 20 Sigma P1379
Washing buffer 100 mM Tris pH 7.4, 10 mM EDTA, 1 M NaCl, 0.1% Tween 20 in nuclease-free H2O.
Dithiothreitol (DTT) Sigma 43817 Prepare as 100 mM DTT in nuclease-free H2O, always prepare fresh before use.
RNeasy MinElute Kit Qiagen 74204 Store columns at 4 °C, remaining components of the kit at room temperature.
1.5 ml screw-top polypropylene tubes Sarstedt 72.692.005 Compatible with Dimethylformamide
2.0 ml screw-top polypropylene tubes Sarstedt 72.694.005 Compatible with Dimethylformamide
15 ml tubes BD Falcon 352096 Compatible with Dimethylformamide
50 ml tubes BD Falcon 352070 Compatible with Dimethylformamide
All solutions/reagents should be stored at room temperature unless otherwise specified.
Equipment
UV/VIS spectrophotometer Thermo Scientific NanoDrop 1000 Or equivalent. Use low volume (1-2 μl) for measurements of low RNA concentrations to avoid excessive sample loss.
Polypropylene 15 ml centrifuge tubes VWR International 525-0153 In contrast to standard 15 ml tubes, these tolerate up to 15,000 × g
High-speed centrifuge Beckman Coulter Avanti J-25 Or equivalent equipment capable of reaching 13,000×g
High-speed rotor Beckman Coulter JLA-16250 Or equivalent equipment capable of reaching 13,000×g
Adaptors for 15 ml tubes Laborgeräte Beranek 356964 Or equivalent equipment capable of reaching 13,000×g
Refrigerated table-top centrifuge Eppendorf 5430 R Or equivalent.
Thermomixer Eppendorf Thermomixer compact Or equivalent.
Magnetic stand Miltenyi Biotec 130-042-109 One stand holds 8 μMacs columns.
Waterbath Grant SUB Aqua 5 Or equivalent.
Ultra-fine scale A&D GR-202 Or equivalent.
E-Gel iBase Power System Invitrogen G6400UK For RNA gels; or equivalent.
E-Gel EX 1% agarose precast gels Invitrogen G4020-01 For RNA gels; or equivalent.

References

  1. Brown, P. O., Botstein, D. Exploring the new world of the genome with DNA microarrays. Nature Genetics. 21, 33-37 (1999).
  2. Mortazavi, A., Williams, B. A., Mccue, K., Schaeffer, L., Wold, B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nature Methods. 5, 621-628 (2008).
  3. Nagalakshmi, U., Wang, Z., et al. The transcriptional landscape of the yeast genome defined by RNA sequencing. Science. 320, 1344-1349 (2008).
  4. Wilhelm, B. T., Marguerat, S., et al. Dynamic repertoire of a eukaryotic transcriptome surveyed at single-nucleotide resolution. Nature. 453, 1239-U1239 (2008).
  5. Dölken, L., Ruzsics, Z., et al. High-resolution gene expression profiling for simultaneous kinetic parameter analysis of RNA synthesis and decay. RNA. 14, 1959-1972 (2008).
  6. Yang, E., van Nimwegen, E., et al. Decay rates of human mRNAs: correlation with functional characteristics and sequence attributes. Genome Res. 13, 1863-1872 (2003).
  7. Friedel, C. C., Dölken, L., Ruzsics, Z., Koszinowski, U. H., Zimmer, R. Conserved principles of mammalian transcriptional regulation revealed by RNA half-life. Nucleic Acids Res. 37, e115 (2009).
  8. Nilsen, T. W., Graveley, B. R. Expansion of the eukaryotic proteome by alternative splicing. Nature. 463, 457-463 (2010).
  9. Windhager, L., Bonfert, T., et al. Ultra short and progressive 4sU-tagging reveals key characteristics of RNA processing at nucleotide resolution. Genome Res. , (2012).
  10. Melvin, W. T., Milne, H. B., Slater, A. A., Allen, H. J., Keir, H. M. Incorporation of 6-thioguanosine and 4-thiouridine into RNA. Application to isolation of newly synthesised RNA by affinity chromatography. Eur. J Biochem. 92, 373-379 (1978).
  11. Cleary, M. D., Meiering, C. D., Jan, E., Guymon, R., Boothroyd, J. C. Biosynthetic labeling of RNA with uracil phosphoribosyltransferase allows cell-specific microarray analysis of mRNA synthesis and decay. Nature Biotechnology. 23, 232-237 (2005).
  12. Kenzelmann, M., Maertens, S., et al. Microarray analysis of newly synthesized RNA in cells and animals. Proc. Natl. Acad. Sci. U.S.A. 104, 6164-6169 (2007).
  13. Schwanhäusser, B., Busse, D., et al. Global quantification of mammalian gene expression control. Nature. 473, 337-342 (2011).
  14. Rabani, M., Levin, J. Z., et al. Metabolic labeling of RNA uncovers principles of RNA production and degradation dynamics in mammalian cells. Nat. Biotechnol. , (2011).
  15. Miller, M. R., Robinson, K. J., Cleary, M. D., Doe, C. Q. TU-tagging: cell type-specific RNA isolation from intact complex tissues. Nat. Methods. 6, 439-441 (2009).
  16. Miller, C., Schwalb, B., et al. Dynamic transcriptome analysis measures rates of mRNA synthesis and decay in yeast. Mol. Syst. Biol. 7, 458 (2011).
  17. Weintz, G., Olsen, J. V., et al. The phosphoproteome of toll-like receptor-activated macrophages. Mol. Syst. Biol. 6, 371 (2010).
  18. Lipsett, M. N. The isolation of 4-thiouridylic acid from the soluble ribonucleic acid of Escherichia coli. Journal of Biological Chemistry. 240, 3975-3978 (1965).
  19. Marcinowski, L., Liedschreiber, M., et al. Real-time Transcriptional Profiling of Cellular and Viral Gene Expression during Lytic Cytomegalovirus Infection. PLoS Pathog. 8, e1002908 (2012).
  20. Chomczynski, P., Mackey, K. Short technical reports. Modification of the TRI reagent procedure for isolation of RNA from polysaccharide- and proteoglycan-rich sources. Biotechniques. 19, 942-945 (1995).
  21. Friedel, C. C., Dölken, L. Metabolic tagging and purification of nascent RNA: implications for transcriptomics. Mol. Biosyst. 5, 1271-1278 (2009).
  22. Friedel, C. C., Kaufmann, S., Dölken, L., Zimmer, R. HALO – A Java framework for precise transcript half-life determination. Bioinformatics. , (2010).

Play Video

Cite This Article
Rädle, B., Rutkowski, A. J., Ruzsics, Z., Friedel, C. C., Koszinowski, U. H., Dölken, L. Metabolic Labeling of Newly Transcribed RNA for High Resolution Gene Expression Profiling of RNA Synthesis, Processing and Decay in Cell Culture. J. Vis. Exp. (78), e50195, doi:10.3791/50195 (2013).

View Video