Summary

乳腺癌细胞侵袭定量使用三维(3D)模型

Published: June 11, 2014
doi:

Summary

本文提供的详细方法为使用三维(3D)测定法来量化乳腺癌细胞的侵袭。具体来说,我们将讨论建立这样的检测要求的程序,量化和数据分析,以及方法来探讨及细胞膜的完整性,当细胞侵入发生的损失。

Abstract

现在是众所周知的细胞和组织微环境是影响肿瘤起始和进展的关键调节因子。此外,细胞外基质(ECM)已被证明是在培养和稳态体内细胞行为的关键调节剂。在二维(2D)培养细胞的当前方法中,塑料表面的结果的细胞和它们的微环境之间复杂的相互作用的干扰和丢失。通过使用三维(3D)培养物测定,用于细胞的微环境相互作用的条件成立类似的体内微环境。本文提供了详细的方法生长的乳腺癌细胞在三维基底膜蛋白基质,体现三维培养的细胞侵袭的评估潜在进入周围环境。此外,我们将讨论这些3D分析如何有潜力,研究信号molec的损失ULES,通过免疫组化方法调节上皮细胞的形态。这些研究有助于识别重要的机械细节成调节入侵的方法中,需要对乳腺癌的扩散。

Introduction

迁移和侵袭能力的个人或集体的细胞是癌症的两大特色,以及所需癌细胞1-4的转移扩散。癌症细胞的启动转移的能力取决于它们的能力来迁移和侵入使用的invadopodia以降解细胞基底膜邻近组织。 invadopodia的是动态的肌动蛋白富含基质降解的突起,通过基质降解蛋白酶5的释放使胞外基质的降解。癌细胞侵袭涉及矩阵接着癌症细胞迁移的降解,这是伴随着所述三维(3D)矩阵环境2的重组。因此,为了穿过基质,细胞必须改变其形状和与细胞外基质(ECM)2交互。

乳腺组织完整性的维持依赖于紧密微机控制三维组织体系结构,因为细胞-细胞外基质和细胞-细胞粘附路口影响基因表达和上皮极性的破坏可导致癌症6-10的发作。然而,大多数体外迁移和侵袭测定法如Transwell小室测定法或伤划痕测定是2维(2D),因此这些忽视的细胞和它们的相邻环境3,6,8,11-14之间的错综复杂的相互作用。相当大的形态和功能的多样性包括不同的细胞形态,细胞分化,细胞-基质粘连和基因表达模式已经由培养细胞在三维培养那些在一般2D缺乏实验2,6,8,11检测。因此,采用了3D试验是显著有益的扼要体内的状况更符合生理,导致基础研究到临床6-10更好的翻译突破性的发现。然而,应该注意的尽管获得与使用三维培养的诸多优点,这种模式不能捕获所有的体内肿瘤微环境,包括各种细胞类型的复杂性。然而,有可能把基质细胞分化成的三维模型(例如,成纤维细胞,白细胞,巨噬细胞),研究了对癌症的细胞粘附和侵入15-17肿瘤-基质的相互作用的影响。

乳腺上皮细胞的培养生长最有效的,当细胞外基质蛋白,如层粘连蛋白和胶原蛋白都存在。与该已知的,市售的基质混合物是来自于Engelbreth-的Holm-群(EHS)小鼠肿瘤和被称为基质胶基底膜基质2,8。已经建立了多种技术来增加上皮细胞的3D殖民地基底膜基质2,8。三维基底膜基质的模型是有效的建立既恶性及非恶性乳腺细胞生长,类似什么是发生在体内环境18,19。 MCF10A细胞非恶性乳腺上皮细胞。当在基底膜基质生长,这些细胞表现出正常乳腺细胞的体内特性,并进行控制,细胞增殖,细胞分化,凋亡和建立的内腔空间8,12,20。此外,MCF10A细胞的形成在三维培养腺泡细胞的细胞核的外观更接近于乳腺上皮细胞在组织中比在单层培养21。通过研究比塞尔和同事们首次揭示了恶性乳腺细胞可以从非恶性乳腺细胞相鉴别时,层粘连蛋白丰富的环境中成长,因为恶性细胞显示高度混乱的表型,增加增殖,降低细胞对细胞粘附,间质标记物的表达增加,并增加了侵入结构的数量形成3,6,22。

在细胞环境中的异常可影响肿瘤的形成20。在三维培养方法可用于有效地学习,肿瘤细胞和其周围环境之间发生的通信,并确定如何蛋白表达的影响,例如通信14,20,21,23。本文提供了详细的方法生长的MDA-MB-231乳腺癌细胞在三维培养分析侵袭,并研究上皮形态的利用上皮标志物层粘连蛋白,细胞基底膜18,19,24的一个组成部分的损失, 25。详细的程序提供准确和可重复地量化星状(侵入型)结构形成由任何侵入性肿瘤细胞,而不是限定的共同的乳腺癌细胞系(如MDA-MB-231,HS578T,MCF-7,T47D或能力)。因此,该测定可以作为评价或在细胞如何表达治疗与平台亲或反侵入性化合物调节细胞外基质的降解,由单个或多个细胞。

Protocol

1,三维基底膜基质乳腺癌细胞培养(埋置技术) 处理基底膜基底膜基质:在4℃下在冰上解冻过夜基底膜基质是液体在低温下固化,但在室温下。保持基底膜基质冰( 图1A-B)上。 覆盖共聚焦一号玻璃底培养皿用50μl基底膜基质的利用P-200的Pipetman的前端在螺旋形图案( 图1C)扩频矩阵的装置。传播基底膜基质时避免气泡的形成谨慎使用。同样,避免传播矩?…

Representative Results

在MDA-MB-231细胞侵入在三维矩阵的一个例子示于图3C。将细胞包埋在基质(第1天),并开始由第3天形成侵入性(星状)结构,以及完全侵入到基质由5天( 图3C)。形成星状的菌落数进行计数,并表示为每培养皿的菌落(侵入性和非侵入性)的总数的百分比。另外,由于测量是为五天每日进行,入侵的速率也可以进行评价。 建立形态发生事件的时间线?…

Discussion

三维细胞培养技术的发展使得研究人员研究乳腺上皮细胞的转化,使我们能够想象的巨大的形态学变化。除了分析细胞的侵袭,单或多细胞的乳腺上皮细胞球体可用于评估改变细胞的粘附,增殖,大小和基底根尖极性。相反,以前报道的方法,其中所述细胞覆盖有ECM 8,我们的方法嵌入了细胞在细胞外基质18,19,24,这允许多方向侵入到被量化。这些创新的三维培养模型使研究人员?…

Divulgaciones

The authors have nothing to disclose.

Acknowledgements

This work was conducted with funds to M.B. from the Canadian Institutes of Health Research (CIHR) grant MOP 107972. M.B. is a recipient of a CIHR New Investigator Salary Award. D.C. is a recipient of studentships from the Translational Breast Cancer Research Unit and the CIHR Strategic Training Program in Cancer Research and Technology Transfer, London Regional Cancer Program. C.G. is recipient of studentships from the Translational Breast Cancer Research Unit, London Regional Cancer Program and from the CIHR- Strategic Training Program in Cancer Research and Technology Transfer. SGD.

Materials

Name of Material/ Equipment Company Catalog Number Comments/Description
1.5 mL tubes VWR CA10011-700 Sterile, disposable
100-mm culture dish BD353003 VWR CABD353003 Sterile, disposable
15 mL Falcon tube VWR CA21008-918 Sterile, disposable
1 mL filtered tips VWR 10011-350 Sterile, disposable
200 uL filtered tips VWR 22234-016 Sterile, disposable
20 uL filtered tips VWR 22234-008 Sterile, disposable
35-mm glass-bottomed Confocal No.1 culture dishes  MatTek Corporation P35G-1.0-14-C Precooled before use
Bovine serum albumin (BSA) BioShop ALB003.100 Used at 3% for IF
Alexa Fluor 488 Goat Anti-Mouse IgG (H+L) Antibody, highly cross-adsorbed Life Technologies  A11029 1:250 for IF
Alexa Fluor 568 Goat Anti-Rabbit IgG (H+L) Antibody Life Technologies  A11011 1:1200 for IF
Anti-Beta-Catenin  BD Transduction Laboratories 610153 Mouse-monoclonal; Used at 1:100 for IF
Fetal bovine serum (FBS) Sigma F1051 Used at 10% (v/v) 
Hoechst 33258, Pentahydrate (bis-Benzimide) – 10 mg⁄mL Solution in Water Life Technologies H3569 Used at 0.1% (1:10000 dilution)
InVivo Analyzer Suite  Media Cybernetics Used for 3D culture imaging (DIC images at 10x and 40x)
Kisspeptin-10 (KP-10) EZ Biolabs PT0512100601 Used at 100nM 
Anti-Laminin  Cedarlane AB19012(CH) Rabbit-polyclonal full length human; Used at 1:100 for IF
LSM-510 META laser scanning microscope  Zeiss Used at 63X objective; oil immersion lens
Matrigel phenol red free (BD356237) VWR CACB356237  Lot No.2180819; 10.4 mg/mL
Olympus IX-81 microscope  Olympus Used for 3D culture imaging (DIC images at 10x and 40x)
Penicillin-Streptomycin (10,000 U/mL) Life Technologies 15140-122 Antibiotic (added to media; used at 0.01%)
10 mL pipet  VWR CA53300-523 Sterile, disposeable
RPMI 1640 Medium with Glutamine Life Technologies 11875-119 Used for culturing of MDA-MB-231 cells
0.25% Trypsin-EDTA (1X), Phenol Red Life Technologies 25200-072 Used to trypsinize MDA-MB-231 cells
MEGM (bullet kit): MEBM (CC3151)+Single quots (CC4136) Lonza CC-3150 Used for culturing of MCF10A cells

Referencias

  1. Chambers, A. F., Groom, A. C., MacDonald, I. C. Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer. 2, 563-572 (2002).
  2. Kramer, N., et al. In vitro cell migration and invasion assays. Mutat Res. 752, 10-24 (2013).
  3. Shaw, K. R., Wrobel, C. N., Brugge, J. S. Use of three-dimensional basement membrane cultures to model oncogene-induced changes in mammary epithelial morphogenesis. J Mammary Gland Biol Neoplasia. 9, 297-310 (2004).
  4. Eccles, S. A., Welch, D. R. Metastasis: recent discoveries and novel treatment strategies. Lancet. 369, 1742-1757 (2007).
  5. Poincloux, R., Lizarraga, F., Chavrier, P. Matrix invasion by tumour cells: a focus on MT1-MMP trafficking to invadopodia. Journal of cell science. 122, 3015-3024 (2009).
  6. Bissell, M. J., Labarge, M. A. Context, tissue plasticity, and cancer: are tumor stem cells also regulated by the microenvironment. Cancer Cell. 7, 17-23 (2005).
  7. Burgstaller, G., Oehrle, B., Koch, I., Lindner, M., Eickelberg, O. Multiplex Profiling of Cellular Invasion in 3D Cell Culture Models. PLoS One. 8, (2013).
  8. Debnath, J., Muthuswamy, S. K., Brugge, J. S. Morphogenesis and oncogenesis of MCF-10A mammary epithelial acini grown in three-dimensional basement membrane cultures. Methods. 30, 256-268 (2003).
  9. Mroue, R., Bissell, M. J. Three-dimensional cultures of mouse mammary epithelial cells. Methods Mol Biol. 945, 221-250 (2013).
  10. Vidi, P. A., Bissell, M. J., Lelievre, S. A. Three-dimensional culture of human breast epithelial cells: the how and the why. Methods Mol Biol. 945, 193-219 (2013).
  11. Bissell, M. J., Rizki, A., Mian, I. S. Tissue architecture: the ultimate regulator of breast epithelial function. Curr Opin Cell Biol. 15, 753-762 (2003).
  12. Debnath, J., et al. The role of apoptosis in creating and maintaining luminal space within normal and oncogene-expressing mammary acini. Cell. 111, 29-40 (2002).
  13. Weaver, V. M., Bissell, M. J. Functional culture models to study mechanisms governing apoptosis in normal and malignant mammary epithelial cells. J Mammary Gland Biol Neoplasia. 4, 193-201 (1999).
  14. Weaver, V. M., Howlett, A. R., Langton-Webster, B., Petersen, O. W., Bissell, M. J. The development of a functionally relevant cell culture model of progressive human breast cancer. Semin Cancer Biol. 6, 175-184 (1995).
  15. Kenny, H. A., Krausz, T., Yamada, S. D., Lengyel, E. Use of a novel 3D culture model to elucidate the role of mesothelial cells, fibroblasts and extra-cellular matrices on adhesion and invasion of ovarian cancer cells to the omentum. Int J Cancer. 121, 1463-1472 (2007).
  16. Cougoule, C., et al. Blood leukocytes and macrophages of various phenotypes have distinct abilities to form podosomes and to migrate in 3D environments. European journal of cell biology. 91, 938-949 (2012).
  17. Sung, K. E., et al. Understanding the Impact of 2D and 3D Fibroblast Cultures on In Vitro Breast Cancer Models. PLoS One. , (2013).
  18. Li, T. T., et al. Beta-arrestin/Ral signaling regulates lysophosphatidic acid-mediated migration and invasion of human breast tumor cells. Mol Cancer Res. 7, 1064-1077 (2009).
  19. Zajac, M., et al. GPR54 (KISS1R) transactivates EGFR to promote breast cancer cell invasiveness. PLoS One. 6, (2011).
  20. Underwood, J. M., et al. The ultrastructure of MCF-10A acini. J Cell Physiol. 208, 141-148 (2006).
  21. Lelievre, S. A., et al. Tissue phenotype depends on reciprocal interactions between the extracellular matrix and the structural organization of the nucleus. Proc Natl Acad Sci U S A. 95, 14711-14716 (1998).
  22. Petersen, O. W., Ronnov-Jessen, L., Howlett, A. R., Bissell, M. J. Interaction with basement membrane serves to rapidly distinguish growth and differentiation pattern of normal and malignant human breast epithelial cells. Proc Natl Acad Sci U S A. 89, 9064-9068 (1992).
  23. Weaver, V. M., et al. beta4 integrin-dependent formation of polarized three-dimensional architecture confers resistance to apoptosis in normal and malignant mammary epithelium. Cancer Cell. 2, 205-216 (2002).
  24. Cvetkovic, D., et al. KISS1R Induces Invasiveness of Estrogen Receptor-Negative Human Mammary Epithelial and Breast Cancer Cells. Endocrinology. , 1999-2014 (2013).
  25. Alemayehu, M., et al. beta-Arrestin2 regulates lysophosphatidic acid-induced human breast tumor cell migration and invasion via Rap1 and IQGAP1. PLoS One. , (2013).
check_url/es/51341?article_type=t

Play Video

Citar este artículo
Cvetković, D., Goertzen, C. G., Bhattacharya, M. Quantification of Breast Cancer Cell Invasiveness Using a Three-dimensional (3D) Model. J. Vis. Exp. (88), e51341, doi:10.3791/51341 (2014).

View Video