Summary

재조합 핵심 히스톤에서 뉴 클레오 배열과 뉴 클레오 솜 위치 DNA의 조립

Published: September 10, 2013
doi:

Summary

방법은 재조합 핵심 히스톤에서 모델 뉴 클레오 어레이의 재구성 및 tandemly 반복 뉴 클레오 솜 위치의 DNA에 표시됩니다. 또한 분석에서 초 원심 침강 속도 실험, 및 원자 힘 현미경 (AFM)을 재구성 후의 뉴 클레오 배열 포화 정도를 모니터링하는 데 사용되는 방법을 설명한다.

Abstract

반복적 DNA 분자를 따라 간격이 핵심 히스톤 octamers는 뉴 클레오 배열이라고합니다. 뉴 클레오 배열은 두 가지 방법 중 하나를 얻을 수있다 : 생체 소스의 정제, 또는 재조합 핵심 히스톤에서 체외에서 재구성 및 tandemly 반복 뉴 클레오 솜 위치의 DNA. 후자의 방법은보다 구조적으로 균일 한 조립 및 정밀 위치 뉴 클레오 배열을 허용하는 이점을 갖고있다. 그들이 원심력 하에서 용액을 통해 이주하는 비율을 분석함으로써 고분자의 크기 및 형상에 대한 분석 초 원심 수율 정보에 침강 속도 실험. 이 기술은, 원자력 현미경과 함께 DNA 템플릿의 대다수는 재구성 후 뉴 클레오로 포화되는 것을 보장하는, 품질 관리에 사용될 수있다. 여기에서 우리는 길이 밀리그램 수량을 재구성 할 필요가 조성이 D 프로토콜을 설명염색질의 구조와 기능의 생화학 및 생물 물리학 연구에 적합한 efined 뉴 클레오 배열.

Introduction

진핵 생물의 게놈은 벌거 벗은 DNA가 존재하지 않고, 압축 및 결합 단백질에 의해 구성됩니다. DNA와 단백질의이 단지는 염색질로 알려져 있습니다. 염색질의 기본 반복 단위는 뉴 클레오입니다. 뉴 클레오 히스톤 옥타 약 1.6 배 1 옥타 머 히스톤 주위에 감싸 인 DNA의 146 개의 염기쌍으로 구성되어 있습니다. 히스톤 옥타는 두 개의 복사본 핵심 히스톤의 H2A, H2B, H3, H4와 각각 구성되어있다. 반복적 DNA 분자를 따라 간격이 핵심 히스톤 octamers는 뉴 클레오 배열이라고합니다. 뉴 클레오 배열의 확장 구조는 구조 "문자열에 구슬"10 나노 섬유 또는로하고, 저 염분의 조건 2에서 체외에 존재하고있다. 10 ㎚ 섬유는 배열 내부 압축 및 / 또는 인터 – 배열 올리고머 (2)를 통해 고차 구조로 집광 할 수있다. 이러한 고차 구조, 염의 존재하에 유발 될 수있다또는 뉴 클레오 배열 3,4에 염색질 건축 단백질의 결합을 통해 영향을받을 수있다. 염색질 압축의 수준은 반비례 생체 5,6의 전사 율과 상관된다. 최근의 연구는 분화, 암 발생 및 기타 7,8 같은 공정에서 게놈의 조직 구조의 중요성을 강조한다. 염색질의 구조와 기능을 연구하는 뉴 클레오 배열의 사용은 널리되고있다. 여기에서 우리는 재조합 핵심 히스톤과 뉴 클레오 솜 위치의 DNA에서 뉴 클레오 배열의 조립하는 방법을 설명합니다.

뉴 클레오 솜 위치 시퀀스의 탠덤 반복으로 재조합 DNA를 사용하여 정기적으로 간격 뉴 클레오를 포함하는 배열을 재구성 할 수 있습니다. 더 인기있는 위치 시퀀스의 두 5S rRNA 유전자 서열과 "601"시퀀스 9,10입니다. (601) 순서는 SELEX 실험 및 MOR에서 파생 된전자 강하게 5S 순서 11 이상의 뉴 클레오을 배치합니다. 따라서, (601) 어레이의 링커 DNA 길이는 더 균일하다. Tandemly 반복 뉴 클레오 솜 위치 DNA는 겔 여과 4,12함으로써 얻어진다. 재조합 히스톤은 E.에서 정제된다 변성 조건 13 세 미만 대장균. 재조합 히스톤의 사용은 하나의 정중 뉴 클레오 배열 히스톤 조성물을 제어 할 수있다. 예를 들어, 코어 (15, 16)은 야생형 코어 히스톤 대체 할 수있는 특정 변이 (14) 또는 번역 후 변형을 담지 히스톤.

침강 속도 실험인가 원심력 17 세 미만 용액에 고분자의 침전 속도를 모니터링 할 수 있습니다. 이것은 샘플에서 거대 분자의 크기와 형태에 대한 정보를 산출한다. 침강 속도 실험 따라서 염색질 섬유 용액 상태의 변경 사항을 공부에 적합한 도구입니다크로 마틴 응축 18에 의한 구조. 중요한 것은 뉴 클레오 배열 재구성의 품질 관리 단계로서 침강 속도 실험을 사용하는 것이 우선 필요하다. DNA와 뉴 클레오는 적절한 몰비 결합하지 않는 경우, 배열 또는 과다 포화 핵심 히스톤있을 수 있습니다. 따라서, 침강 속도 실험으로부터 얻은 정보는 DNA가 적절히 뉴 클레오로 포화되는 것을 보장하기 위해 사용된다. 그것은 이전에 uncharacterized DNA 템플릿 작업 특히, 뉴 클레오와 DNA의 채도를 추정하는 다른 방법을 사용하는 것이 중요합니다. 그러므로, 우리는 원자 힘 현미경 (AFM)을 사용하여 뉴 클레오 어레이 분석 방법을 설명한다. AFM은 수있는 강력한 기술이다 같은 포화 레벨, 히스톤 변형의 존재의 효과 또는 MgCl2를 19, 20의 효과와 같은 매개 변수의 개수의 효과를 가시화. AFM은 응용하고있다ED는 시간 경과 영상 (21)를 사용하여 뉴 클레오 역학을 연구한다. 시험관들이 AFM 이미징 22 적당한 크기의 범위에 속하기 때문에 뉴 클레오 12 메르 배열 AFM 연구에 특히 의무가 있습니다 조립. 본 연구에서 우리는 품질 관리뿐만 아니라 ( "보는 것이 믿는 것") AUC의 데이터를 긍정하는 수단으로 뉴 클레오 배열의 AFM을 사용했습니다. 간단한 시각화 외에도, AFM은 추가적인 메트릭과 같은 샘플의 높이 프로파일의 측정을 허용한다.

Protocol

1. Octamers 재조합 핵심 히스톤의 조립 이유 : 뉴 클레오 어레이 재구성의 첫 번째 단계는 동결 건조 된 재조합 코어 히스톤으로부터 네이티브 코어 히스톤 octamers을 제조하는 공정이다. 히스톤 단백질은 동일한 몰 양의 결합 버퍼를 재 접힘에 변성 버퍼 중 샘플을 투석에 의해 히스톤 octamers로 조립된다. 정화 (13)을 설명 된대로 (H2A, H2B, H3, H4) 재조합 핵심 히스?…

Representative Results

프로토콜을 설명하기 위해 우리는 12 직렬의 601 위치 시퀀스 (601 207 × 12)의 207 bp의 반복으로 이루어진 재조합 Xenopus의 핵심 히스톤과 DNA에서 뉴 클레오 배열을 재구성. 우리는 먼저 동결 건조의 핵심 히스톤에서 네이티브 octamers을 조립 한 후 S200 열 (그림 1A)를 사용하여 FPLC에 의해 octamers을 정제. 큰 단지는 S200 열에서 이전 용출. 히스톤은 일반적으로 다음 순서로 용출 :…

Discussion

모델 뉴 클레오 어레이는 염색질 구조와 기능의 시험 관내 연구에 매우 유용한 도구이다. 예를 들어, 널리 용액 30-34에서 염색질 섬유 축합 메카니즘을 연구하는 데 사용하고, 그것이 가능 tetranucleosome (35)의 x-선 구조를 구하는되었습니다. 최근에 그들은 특정 핵심 히스톤 변형, 돌연변이 전사 후 수정 14-16,36의 구조적 효과를 해독에 유용 입증했다. 여기에서 우리는 …

Divulgations

The authors have nothing to disclose.

Acknowledgements

이 작품은 NIH 보조금 GM45916 및 GM66834 JCH 및이 작품을 AK하는 국제 레트 증후군 재단의 화목에 의해 지원되었다는 NIH가 GM088409와 하워드 휴즈 의학 연구소에게 KL 공헌을 부여에 의해 지원되었다

Materials

Name of Reagent/Material Company Catalog Number Comments
(3-Aminopropyl)triethoxysilane Sigma-Aldrich A3648-100ML
6-8 kDa MWCO Dialysis Tubing Fisher 21-152-5
HiLoad Superdex 200 16/60 Column GE 17-1069-01
Vivaspin 50 kDa MWCO Centrifugal Concentrator Sartorius VS2031
12-14 kDa MWCO Dialysis Tubing Fisher 08-667A
Illustra Sephacryl S-1000 Superfine GE 17-0476-01
XL-A/I Analytical Ultracentrifuge Beckman-Coulter

References

  1. Luger, K., Mader, A., Richmond, R., Crystal Sargent, D. structure of the nucleosome core particle at 2.8 A resolution. Nature. 7, (1997).
  2. Hansen, J. C. Conformational dynamics of the chromatin fiber in solution: determinants, mechanisms, and functions. Annual Review of Biophysics and Biomolecular Structure. 31, 361-392 (2002).
  3. McBryant, S., Adams, V., Hansen, J. Chromatin architectural proteins. Chromosome Research. 14 (1), 39-51 (2006).
  4. Hansen, J. C., Ausio, J., Stanik, V. H., van Holde, K. E. Homogeneous reconstituted oligonucleosomes, evidence for salt-dependent folding in the absence of histone H1. Biochimie. 28 (23), 9129-9136 (1989).
  5. Szerlong, H. J., Prenni, J. E., Nyborg, J. K., Hansen, J. C. Activator-dependent p300 acetylation of chromatin in vitro: enhancement of transcription by disruption of repressive nucleosome-nucleosome interactions. The Journal of Biological Chemistry. 285 (42), 31954-31964 (2010).
  6. Cirillo, L. A., Lin, F. R., Cuesta, I., Friedman, D., Jarnik, M., Zaret, K. S. Opening of compacted chromatin by early developmental transcription factors HNF3 (FoxA) and GATA-4. Molecular Cell. 9 (2), 279-289 (2002).
  7. Nguyen, C., Gonzales, F. chromatin structure associated with methylation-induced gene silencing in cancer cells: correlation of accessibility, methylation, MeCP2 binding and acetylation. Nucleic Acids Research. 29 (22), 4598-4606 (2001).
  8. Cuesta, I., Zaret, K. S., Santisteban, P. The forkhead factor FoxE1 binds to the thyroperoxidase promoter during thyroid cell differentiation and modifies compacted chromatin structure. Molecular and Cellular Biology. 27 (20), 7302-7314 (2007).
  9. Simpson, R. T., Stafford, D. W. Structural features of a phased nucleosome core particle. Proceedings of the National Academy of Sciences of the U S A. 80 (1), 51-55 (1983).
  10. Lowary, P. T., Widom, J. New DNA sequence rules for high affinity binding to histone octamer and sequence-directed nucleosome positioning. Journal of Molecular Biology. 276 (1), 19-42 (1998).
  11. Lowary, P., Widlund, H., Cao, H. Sequence motifs and free energies of selected natural and non-natural nucleosome positioning DNA sequences. Journal of Molecular Biology. 288, 213-229 (1999).
  12. Gordon, F., Luger, K., Hansen, J. C. The Core Histone N-terminal Tail Domains Function Independently and Additively during Salt-dependent Oligomerization of Nucleosomal Arrays *. The Journal of Biological Chemistry. 280 (40), 33701-33706 (2005).
  13. Luger, K., Rechsteiner, T. J., Richmond, T. J. Expression and purification of recombinant histones and nucleosome reconstitution. Methods in Molecular Biology (Clifton, N.J.). 119 (4), 1-16 (1999).
  14. McBryant, S. J., Klonoski, J., et al. Determinants of histone H4 N-terminal domain function during nucleosomal array oligomerization: roles of amino acid sequence, domain length, and charge density. The Journal of Biological Chemistry. 284 (25), 16716-16722 (2009).
  15. Ma Shogren-Knaak, ., Fry, C. J., Peterson, C. L. A native peptide ligation strategy for deciphering nucleosomal histone modifications. The Journal of Biological Chemistry. 278 (18), 15744-158 (2003).
  16. Lu, X., Simon, M. The effect of H3K79 dimethylation and H4K20 trimethylation on nucleosome and chromatin structure. Nat Struct Mol Biol. 15 (10), 1122-1124 (2008).
  17. Ausio, J. Analytical Ultracentrifugation for the Analysis of Chromatin Structure. Biophysical Chemistry. 86 (2-3), 141-153 (2000).
  18. Hansen, J., Kreider, J., Demeler, B., Fletcher, T. Analytical ultracentrifugation and agarose gel electrophoresis as tools for studying chromatin folding in solution. Methods. 12 (1), 62-72 (1997).
  19. Montel, F., Menoni, H., et al. The dynamics of individual nucleosomes controls the chromatin condensation pathway: direct atomic force microscopy visualization of variant chromatin. Biophysical Journal. 97 (2), 544-5453 (2009).
  20. Muthurajan, U. M., McBryant, S. J., Lu, X., Hansen, J. C., Luger, K. The linker region of macroH2A promotes self-association of nucleosomal arrays. The Journal of Biological Chemistry. 286 (27), 23852-23864 (2011).
  21. Shlyakhtenko, L. S., Lushnikov, A. Y., Lyubchenko, Y. L. Dynamics of nucleosomes revealed by time-lapse atomic force microscopy. Biochimie. 48 (33), 7842-7848 (2009).
  22. Lohr, D., Bash, R., Wang, H., Yodh, J., Lindsay, S. Using atomic force microscopy to study chromatin structure and nucleosome remodeling. Methods (San Diego, Calif). 41 (3), 333-341 (2007).
  23. Dyer, P. N., Edayathumangalam, R. S., et al. Reconstitution of nucleosome core particles from recombinant histones and DNA. Methods in Enzymology. 375, 23-44 (2004).
  24. Sambrook, J., Russell, D. . Molecular cloning: a laboratory manual. , (2001).
  25. Balbo, A., Zhao, H., Brown, P. H., Schuck, P. Assembly, loading, and alignment of an analytical ultracentrifuge sample cell. J. Vis. Exp. (33), e1530 (2009).
  26. Demeler, B. UltraScan: a comprehensive data analysis software package for analytical ultracentrifugation experiments. Modern Analytical Ultracentrifugation: Techniques. , 210-230 (2005).
  27. Holde, K. V., Weischet, W. Boundary analysis of sedimentation velocity experiments with monodisperse and paucidisperse solutes. Biopolymers. 17 (6), 1387-1403 (1978).
  28. Demeler, B., van Holde, K. E. Sedimentation velocity analysis of highly heterogeneous systems. Analytical Biochemistry. 335, 279-288 (2004).
  29. Hansen, J., Lohr, D. Assembly and structural properties of subsaturated chromatin arrays. Journal of Biological Chemistry. 8, 5840-5848 (1993).
  30. Routh, A., Sandin, S., Rhodes, D. Nucleosome repeat length and linker histone stoichiometry determine chromatin fiber structure. Proceedings of the National Academy of Sciences of the U S A. 105 (26), 8872-8877 (2008).
  31. Zhou, J., Fan, J. Y., Rangasamy, D., Tremethick, D. J. The nucleosome surface regulates chromatin compaction and couples it with transcriptional repression. Nature Structural & Molecular Biology. 14 (11), 1070-1076 (2007).
  32. Dorigo, B., Schalch, T., Kulangara, A., Duda, S., Schroeder, R. R., Richmond, T. J. Nucleosome arrays reveal the two-start organization of the chromatin fiber. Science (New York, N.Y.). 306 (5701), 1571-1573 (2004).
  33. Correll, S. J., Schubert, M. H., Grigoryev, S. a Short nucleosome repeats impose rotational modulations on chromatin fibre folding. The EMBO Journal. 31 (10), 2416-2426 (2012).
  34. Mcbryant, S. J., Krause, C., Woodcock, C. L., Hansen, J. C. The Silent Information Regulator 3 Protein , SIR3p , Binds to Chromatin Fibers and Assembles a Hypercondensed Chromatin Architecture in the Presence of Salt. Molecular and Cellular Biology. 28 (11), 3563-3572 (2008).
  35. Schalch, T., Duda, S., Sargent, D. F., Richmond, T. J. X-ray structure of a tetranucleosome and its implications for the chromatin fibre. Nature. 436 (7047), 138-1341 (2005).
  36. Fan, J. Y., Gordon, F., Luger, K., Hansen, J. C., Tremethick, D. J. The essential histone variant H2A.Z regulates the equilibrium between different chromatin conformational states. Nature Structural Biology. 9 (3), 172-176 (2002).
  37. Carruthers, L. M., Bednar, J., Woodcock, C. L., Hansen, J. C. Linker histones stabilize the intrinsic salt-dependent folding of nucleosomal arrays: mechanistic ramifications for higher-order chromatin folding. Biochimie. 37 (42), 14776-14787 (1998).
  38. Huynh, V. A. T., Robinson, P. J. J., Rhodes, D. A Method for the In Vitro Reconstitution of a Defined "30 nm" Chromatin Fibre Containing Stoichiometric Amounts of the Linker Histone. Journal of Molecular Biology. 345 (5), 957-968 (2005).
  39. Dorigo, B., Schalch, T. Chromatin fiber folding: requirement for the histone H4 N-terminal tail. J. Mol. Biol. 2836 (03), 85-96 (2003).
  40. Qian, R. L., Liu, Z. X., et al. Visualization of chromatin folding patterns in chicken erythrocytes by atomic force microscopy (AFM. Cell Research. 7 (2), 143-150 (1997).

Play Video

Citer Cet Article
Rogge, R. A., Kalashnikova, A. A., Muthurajan, U. M., Porter-Goff, M. E., Luger, K., Hansen, J. C. Assembly of Nucleosomal Arrays from Recombinant Core Histones and Nucleosome Positioning DNA. J. Vis. Exp. (79), e50354, doi:10.3791/50354 (2013).

View Video