Summary

树脂辅助捕获与同量异位串联质量标签标记相结合,用于蛋白质硫醇氧化的多重定量

Published: June 21, 2021
doi:

Summary

蛋白硫醇氧化在正常的生理和病理生理条件下具有显著意义。我们描述了定量氧化还原蛋白质组学方法的细节,该方法利用树脂辅助捕获,同量异位标记和质谱,能够对蛋白质的可逆氧化半胱氨酸残基进行位点特异性鉴定和定量。

Abstract

蛋白质硫醇的可逆氧化修饰最近已成为细胞功能的重要介质。本文描述了定量氧化还原蛋白质组学方法的详细程序,该方法利用树脂辅助捕获(RAC)与串联质量标签(TMT)同量异位标记和液相色谱-串联质谱(LC-MS/MS)相结合,允许在蛋白质组水平上对氧化蛋白硫醇进行多重随机定量。关于氧化半胱氨酸残基的位点特异性定量信息为这种修饰的功能影响提供了额外的见解。

该工作流程适用于多种样品类型,包括培养细胞(例如,哺乳动物,原核生物)和整个组织(例如,心脏,肺,肌肉),它们最初被裂解/匀浆化,游离硫醇被烷基化以防止人工氧化。然后,氧化的蛋白质硫醇被硫醇亲和树脂还原和捕获,通过允许在不额外转移蛋白质/肽的情况下执行正在进行的消化、标记和洗涤程序,从而简化和简化工作流程步骤。最后,通过LC-MS/MS洗脱和分析标记的肽,以揭示整个蛋白质组中与硫醇氧化相关的全面化学计量变化。该方法大大提高了对氧化还原依赖性调节在与蛋白硫醇氧化相关的生理和病理生理状态下的作用的理解。

Introduction

在稳态条件下,细胞产生活性氧、氮或硫物质,有助于促进代谢和信号传导等过程1,2,3延伸到原核生物和真核生物。这些反应性物质的生理水平是正常细胞功能所必需的,也称为“良性应激”14。相反,氧化剂的增加导致氧化剂和抗氧化剂之间的不平衡会导致氧化应激或“痛苦”1,从而导致细胞损伤。氧化剂通过修饰不同的生物分子(包括蛋白质、DNA、RNA 和脂质)将信号转导到生物途径。特别是,蛋白质的半胱氨酸残基是高反应性位点,由于半胱氨酸上的硫醇基团而容易氧化,其对不同类型的氧化剂具有反应性5。这产生了多种基于半胱氨酸的可逆氧化还原翻译后修饰(PTM),包括亚硝基化(SNO),谷硫酰化(SSG),亚磺酰化(SOH),过硫化(SSH),多硫化(SSNH),酰化和二硫化物。半胱氨酸氧化的不可逆形式包括亚磺酰化(SO2H)和磺酰化(SO3H)。

半胱氨酸残基的可逆氧化修饰可以起到保护作用,防止进一步不可逆氧化,或作为下游细胞途径的信号分子67。一些硫醇氧化还原PTM的可逆性允许半胱氨酸位点作为“氧化还原开关”8,9其中这些位点的氧化还原状态的变化会改变蛋白质功能以调节它们在瞬时过程中的作用。氧化还原PTMs 10的调节作用已在蛋白质功能11的许多方面观察到,包括催化12,蛋白质 – 蛋白质相互作用13,构象变化14,金属离子配位15药理抑制剂结合16。此外,氧化还原PTM参与调节转录17、翻译18或代谢19等途径的蛋白质的半胱氨酸位点。鉴于氧化还原PTM对蛋白质功能和生物过程的影响,量化半胱氨酸位点响应氧化还原状态扰动而经历的氧化程度非常重要。

具有氧化还原状态改变的半胱氨酸位点的鉴定侧重于正常和扰动条件之间位点特异性水平的氧化态比较。倍数变化测量通常用于确定哪些位点发生显着改变,因为这有助于用户解释哪些半胱氨酸位点可能对研究具有生理意义。或者,对特定样品类型的可逆硫醇氧化进行化学计量测量,可以大致了解细胞氧化的生理状态,这是一项经常被忽视和未充分利用的重要测量。修饰化学计量法基于量化修饰硫醇的百分比与总蛋白硫醇(修饰和未修饰)的比率2021。因此,化学计量测量提供了比倍数变化更精确的测量,尤其是在使用质谱时。通过使用化学计量法来确定特定半胱氨酸位点的PTM占用率,可以更容易地确定氧化增加的意义。例如,硫醇氧化增加3倍可能是由于低至1%至3%或大至30%至90%的转变所致。对于仅占1%的位点,氧化增加3倍可能对蛋白质的功能几乎没有影响;然而,对于处于休息状态的占用率为 30% 的站点,增加 3 倍可能会受到更大的影响。在总氧化硫醇和特定氧化修饰(包括蛋白质谷硫酰化 (SSG) 和亚硝基化 (SNO))之间进行化学计量测量时,可以揭示有关特定修饰类型的比率和定量信息。

由于可逆硫醇氧化通常是一种低丰度的翻译后修饰,因此已经开发了多种方法来富集生物样品中含有这些修饰的蛋白质。Jaffrey和其他人设计的一种早期方法,称为生物素转换技术(BST)22,涉及多个步骤,其中未修饰的硫醇通过烷基化被阻断,可逆修饰的硫醇被还原为新生的游离硫醇,新生的游离硫醇被生物素标记,标记的蛋白质通过链霉亲和素亲和力下拉富集。该技术已在许多研究中用于分析SNO和SSG,并且可以适应于探测其他形式的可逆硫醇氧化2324。虽然BST已被用于探测不同形式的可逆硫醇氧化,但这种方法的一个问题是富集受到未生物素化蛋白质与链霉亲和素的非特异性结合的影响。我们实验室开发的另一种方法称为树脂辅助捕获(RAC)2526图1),它避免了通过生物素 – 链霉亲和素系统富集硫醇基团的问题。

在可逆氧化的硫醇还原后,具有新生游离硫醇的蛋白质被硫醇亲和树脂富集,该树脂共价捕获游离硫醇基团,允许比BST更特异性地富集含半胱氨酸的蛋白质。将RAC与同量异位标记和质谱分析的最新进展的多重功能相结合,为蛋白质组范围内可逆氧化的半胱氨酸残基的富集、鉴定和定量创造了一个强大而灵敏的工作流程。质谱技术的最新进展使得能够对硫醇氧化还原蛋白质组进行更深入的分析,从而增加了对蛋白质硫醇氧化的原因和影响的理解27。从特定地点的定量数据中获得的信息可以进一步研究可逆氧化修饰的机理影响和下游影响28.利用该工作流程可以深入了解可逆半胱氨酸氧化对正常生理事件(如衰老)的生理影响,其中SSG水平随年龄而不同。使用SS-31(elamipretide)部分逆转了对SSG的衰老影响,SS-31是一种新型肽,可增强老年小鼠的线粒体功能并降低SSG水平,使它们具有与年轻小鼠更相似的SSG谱29

归因于纳米颗粒暴露的病理生理条件已被证明涉及小鼠巨噬细胞模型中的SSG。使用RAC与质谱联用,作者表明SSG水平与氧化应激程度和巨噬细胞吞噬功能受损直接相关。数据还揭示了对诱导不同程度氧化应激的不同工程纳米材料响应的途径特异性差异30。该方法还证明了其在原核物种中的实用性,用于研究光合蓝藻中昼夜循环对硫醇氧化的影响。观察到硫醇氧化在几个关键生物过程中的广泛变化,包括电子传递、碳固定和糖酵解。此外,通过正交验证,确认了几个关键功能位点被修饰,表明这些氧化修饰的调节作用6

在本文中,我们描述了标准化工作流程(图1)的细节,展示了RAC方法富集蛋白质总氧化半胱氨酸硫醇及其随后标记和化学计量定量的实用性。该工作流程已在不同样品类型的氧化还原状态研究中实施,包括细胞培养物2730和整个组织(例如骨骼肌,心脏,肺)29,31,3233虽然此处未包括,但RAC方案也很容易适用于研究特定形式的可逆氧化还原修饰,包括SSG,SNO和S-酰化,如前所述252934

Protocol

协议中描述的与动物或人类样本/组织有关的所有程序均由人类和动物研究伦理委员会的批准并遵循其机构指南。 1. 样品均质/裂解 冷冻组织样本使用预冷的剃须刀片和镊子在干冰上的玻璃显微镜载玻片上切碎冷冻组织(~30毫克)。将切碎的组织转移到含有 700 μL 缓冲液 A 的预冷 5 mL 圆底聚苯乙烯管中(参见 表 1),并在冰上孵育 30 分钟,避光。…

Representative Results

该方案的完成将导致以前氧化的含半胱氨酸肽的高度特异性富集,通常具有>95%的特异性27,35,36。然而,该方案的几个关键步骤需要特别注意,例如,在样品裂解/均质化之前对游离硫醇进行初始封闭,这禁止人工氧化和人工氧化硫醇的非特异性富集25。样品可以在方案的几个阶段和不同的方法进行分析,包?…

Discussion

树脂辅助捕获已用于各种样品类型和生物系统,用于研究半胱氨酸残基的氧化修饰252930该方法允许在多个水平和读数下评估样品,包括使用SDS-PAGE和蛋白质印迹分析的蛋白质和肽,以及使用质谱法评估单个半胱氨酸位点。无论样品类型或最终终点如何,该方法最终都能高效、特异性地富集含半胱氨酸的蛋白质和肽<sup class…

Divulgations

The authors have nothing to disclose.

Acknowledgements

部分工作得到了NIH资助R01 DK122160,R01 HL139335和U24 DK112349的支持。

Materials

2-(Pyridyldithio)ethylamine hydrochloride Med Chem Express HY-101794 Reagent for in-house resin synthesis
2.0 mL LoBind centrifuge tubes Eppendorf 22431048
5.0 mL LoBind centrifuge tubes Eppendorf 30108310
5.0 mL round bottom tubes Falcon 352054
Acetone Fisher Scientific A949-1
Acetonitrile Sigma Aldrich 34998
Activated Thiol–Sepharose 4B Sigma Aldrich T8512 Potential replacement for thiol-affinity resin
Amicon Ultra 0.5 mL centrifugal filter Millipore Sigma UFC5010BK
Ammonium bicarbonate Sigma Aldrich 09830
Bicinchonicic acid (BCA) Thermo Scientific 23227 Protein Assay Reagent
Centrifuge Eppendorf 5810R
Centrifuge Eppendorf 5415R
Dithiothreitol (DTT) Thermo Scientific 20291
EDTA Sigma Aldrich E5134
HEPES buffer Sigma Aldrich H4034
Homogenizer BioSpec Products 985370
Iodoacetimide (IAA) Sigma Aldrich I1149
N-ethylmaleimide Sigma Aldrich 4259
NHS-Activated Sepharose 4 Fast Flow Cytiva 17-0906-01 Reagent for in-house resin synthesis
QIAvac 24 Plus vacuum manifold Qiagen 19413
Sodium chloride Sigma Aldrich S3014
Sodium dodecyl sulfate (SDS) Sigma Aldrich L6026
Sonicator Branson 1510R-MT
Spin columns Thermo Scientific 69705
Strata C18-E reverse phase columns Phenomenex 8B-S001-DAK Peptide desalting
Thermomixer Eppendorf 5355
Thiopropyl Sepharose 6B GE Healthcare 17-0420-01 Thiol-affinity resin; *Production of Thiopropyl Sepharose 6B resin has been discontinued by the manufacturer (see protocol for details).
TMT isobaric labels (16 plex) Thermo Scientific A44522 Peptide labeling reagent; available in multiple formats
Triethylammonium bicarbonate buffer (TEAB) Sigma Aldrich T7408
Trifluoroacetic acid (TFA) Sigma Aldrich T6508
Triton X-100 Sigma Aldrich T8787
Trypsin Promega V5820
Urea Sigma Aldrich U5378
Vacufuge Plus speedvac Eppendorf 22820001 vacuum concentrator
Vortex mixer Scientific Industries SI-0236

References

  1. Sies, H., Jones, D. P. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nature Reviews Molecular Cell Biology. 21 (7), 363-383 (2020).
  2. Adams, L., Franco, M. C., Estevez, A. G. Reactive nitrogen species in cellular signaling. Experimental Biology and Medicine. 240 (6), 711-717 (2015).
  3. Olson, K. R. The biological legacy of sulfur: A roadmap to the future. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology. 252, 110824 (2021).
  4. Sies, H. Oxidative eustress: on constant alert for redox homeostasis. Redox Biology. 41, 101867 (2021).
  5. Poole, L. B. The basics of thiols and cysteines in redox biology and chemistry. Free Radical Biology & Medicine. 80, 148-157 (2015).
  6. Guo, J., et al. Proteome-wide light/dark modulation of thiol oxidation in cyanobacteria revealed by quantitative site-specific redox proteomics. Molecular & Cellular Proteomics. 13 (12), 3270-3285 (2014).
  7. Shi, X., Qiu, H. Post-translational S-nitrosylation of proteins in regulating cardiac oxidative stress. Antioxidants. 9 (11), 1051 (2020).
  8. Fra, A., Yoboue, E. D., Sitia, R. Cysteines as redox molecular switches and targets of disease. Frontiers in Molecular Neuroscience. 10, 167 (2017).
  9. Klomsiri, C., Karplus, P. A., Poole, L. B. Cysteine-based redox switches in enzymes. Antioxidants & Redox Signaling. 14 (6), 1065-1077 (2011).
  10. Go, Y. M., Jones, D. P. The redox proteome. Journal of Biological Chemistry. 288 (37), 26512-26520 (2013).
  11. Bak, D. W., Bechtel, T. J., Falco, J. A., Weerapana, E. Cysteine reactivity across the subcellular universe. Current Opinion in Chemical Biology. 48, 96-105 (2019).
  12. Skryhan, K., et al. The role of cysteine residues in redox regulation and protein stability of Arabidopsis thaliana starch synthase 1. PLoS One. 10 (9), 0136997 (2015).
  13. Su, Z., et al. Global redox proteome and phosphoproteome analysis reveals redox switch in Akt. Nature Communications. 10 (1), 5486 (2019).
  14. Liebthal, M., Schuetze, J., Dreyer, A., Mock, H. -. P., Dietz, K. -. J. Redox conformation-specific protein-protein interactions of the 2-cysteine peroxiredoxin in Arabidopsis. Antioxidants. 9 (6), 515 (2020).
  15. Pace, N. J., Weerapana, E. Zinc-binding cysteines: diverse functions and structural motifs. Biomolecules. 4 (2), 419-434 (2014).
  16. Schwartz, P. A., et al. Covalent EGFR inhibitor analysis reveals importance of reversible interactions to potency and mechanisms of drug resistance. Proceedings of the National Academy of Sciences of the United States of America. 111 (1), 173 (2014).
  17. Sevilla, E., Bes, M. T., González, A., Peleato, M. L., Fillat, M. F. Redox-based transcriptional regulation in prokaryotes: revisiting model mechanisms. Antioxidants & Redox Signaling. 30 (13), 1651-1696 (2018).
  18. Topf, U., et al. Quantitative proteomics identifies redox switches for global translation modulation by mitochondrially produced reactive oxygen species. Nature Communications. 9 (1), 324 (2018).
  19. Gao, X. -. H., et al. Discovery of a redox thiol switch: implications for cellular energy metabolism. Molecular & Cellular Proteomics. 19 (5), 852-870 (2020).
  20. Prus, G., Hoegl, A., Weinert, B. T., Choudhary, C. Analysis and interpretation of protein post-translational modification site stoichiometry. Trends in Biochemical Sciences. 44 (11), 943-960 (2019).
  21. Zhang, T., Gaffrey, M. J., Li, X., Qian, W. J. Characterization of cellular oxidative stress response by stoichiometric redox proteomics. American Journal of Physiology. Cell Physiology. 320 (2), 182-194 (2021).
  22. Jaffrey, S. R., Erdjument-Bromage, H., Ferris, C. D., Tempst, P., Snyder, S. H. Protein S-nitrosylation: a physiological signal for neuronal nitric oxide. Nature Cell Biology. 3 (2), 193-197 (2001).
  23. Alcock, L. J., Perkins, M. V., Chalker, J. M. Chemical methods for mapping cysteine oxidation. Chemical Society Reviews. 47 (1), 231-268 (2018).
  24. Li, R., Kast, J. Biotin switch assays for quantitation of reversible cysteine oxidation. Methods in Enzymology. 585, 269-284 (2017).
  25. Guo, J., et al. Resin-assisted enrichment of thiols as a general strategy for proteomic profiling of cysteine-based reversible modifications. Nature Protocols. 9 (1), 64-75 (2014).
  26. Liu, T., et al. High-throughput comparative proteome analysis using a quantitative cysteinyl-peptide enrichment technology. Analytical Chemistry. 76 (18), 5345-5353 (2004).
  27. Duan, J., et al. Stochiometric quantification of the thiol redox proteome of macrophages reveals subcellular compartmentalization and susceptibility to oxidative perturbations. Redox Biology. 36, 101649 (2020).
  28. Mitchell, A. R., et al. Redox regulation of pyruvate kinase M2 by cysteine oxidation and S-nitrosation. Biochemical Journal. 475 (20), 3275-3291 (2018).
  29. Campbell, M. D., et al. Improving mitochondrial function with SS-31 reverses age-related redox stress and improves exercise tolerance in aged mice. Free Radical Biology & Medicine. 134, 268-281 (2019).
  30. Duan, J., et al. Quantitative profiling of protein S-glutathionylation reveals redox-dependent regulation of macrophage function during nanoparticle-induced oxidative stress. ACS Nano. 10 (1), 524-538 (2016).
  31. Wang, J., et al. Protein thiol oxidation in the rat lung following e-cigarette exposure. Redox Biology. 37, 101758 (2020).
  32. Kramer, P. A., et al. Fatiguing contractions increase protein S-glutathionylation occupancy in mouse skeletal muscle. Redox Biology. 17, 367-376 (2018).
  33. Chiao, Y. A., et al. Late-life restoration of mitochondrial function reverses cardiac dysfunction in old mice. Elife. 9, 55513 (2020).
  34. Forrester, M. T., et al. Site-specific analysis of protein S-acylation by resin-assisted capture. Journal of Lipid Research. 52 (2), 393-398 (2011).
  35. Su, D., et al. Quantitative site-specific reactivity profiling of S-nitrosylation in mouse skeletal muscle using cysteinyl peptide enrichment coupled with mass spectrometry. Free Radical Biology & Medicine. 57, 68-78 (2013).
  36. Su, D., et al. Proteomic identification and quantification of S-glutathionylation in mouse macrophages using resin-assisted enrichment and isobaric labeling. Free Radical Biology & Medicine. 67, 460-470 (2014).
  37. Searle, B. C., Yergey, A. L. An efficient solution for resolving iTRAQ and TMT channel cross-talk. Journal of Mass Spectrometry. 55 (8), 4354 (2020).
  38. Duan, J., Gaffrey, M. J., Qian, W. J. Quantitative proteomic characterization of redox-dependent post-translational modifications on protein cysteines. Molecular BioSystems. 13 (5), 816-829 (2017).
  39. Behring, J. B., et al. Spatial and temporal alterations in protein structure by EGF regulate cryptic cysteine oxidation. Science Signaling. 13 (615), 7315 (2020).
  40. Shakir, S., Vinh, J., Chiappetta, G. Quantitative analysis of the cysteine redoxome by iodoacetyl tandem mass tags. Analytical and Bioanalytical Chemistry. 409 (15), 3821-3830 (2017).
  41. Gorin, G., Martic, P. A., Doughty, G. Kinetics of the reaction of N-ethylmaleimide with cysteine and some congeners. Archives of Biochemistry and Biophysics. 115 (3), 593-597 (1966).
  42. Hsu, M. -. F., et al. Distinct effects of N-ethylmaleimide on formyl peptide- and cyclopiazonic acid-induced Ca2+ signals through thiol modification in neutrophils. Biochemical Pharmacology. 70 (9), 1320-1329 (2005).
  43. Li, R., Huang, J., Kast, J. Identification of total reversible cysteine oxidation in an atherosclerosis model using a modified biotin switch assay. Journal of Proteome Research. 14 (5), 2026-2035 (2015).
  44. Wang, J., et al. Integrated dissection of cysteine oxidative post-translational modification proteome during cardiac hypertrophy. Journal of Proteome Research. 17 (12), 4243-4257 (2018).
  45. Patra, K. K., Bhattacharya, A., Bhattacharya, S. Molecular dynamics investigation of a redox switch in the anti-HIV protein SAMHD1. Proteins. 87 (9), 748-759 (2019).
check_url/fr/62671?article_type=t

Play Video

Citer Cet Article
Gaffrey, M. J., Day, N. J., Li, X., Qian, W. Resin-Assisted Capture Coupled with Isobaric Tandem Mass Tag Labeling for Multiplexed Quantification of Protein Thiol Oxidation. J. Vis. Exp. (172), e62671, doi:10.3791/62671 (2021).

View Video