Summary

设计生物反应器以改善工程心脏组织的数据采集和模型通量

Published: June 02, 2023
doi:

Summary

使用干细胞来源的心肌细胞进行生物工程改造的三维心脏组织已成为在 体外 研究健康和患病人类心肌的有前途的模型,同时概括了天然心脏生态位的关键方面。该手稿描述了一种用于制造和分析由人类诱导的多能干细胞来源的心肌细胞产生的高内涵工程心脏组织的方案。

Abstract

心力衰竭仍然是全球死亡的主要原因,因此迫切需要更好的人类心脏临床前模型。组织工程对于基础科学心脏研究至关重要; 体外 人类细胞培养消除了动物模型的种间差异,而更像组织的 3D 环境(例如,具有细胞外基质和异细胞偶联)比塑料培养皿上的传统二维培养更能模拟 体内 条件。然而,每个模型系统都需要专门的设备,例如定制设计的生物反应器和功能评估设备。此外,这些方案通常很复杂,劳动密集型,并且受到小而脆弱组织的失败的困扰。

本文描述了一种使用诱导多能干细胞来源的心肌细胞生成强大的人类工程心脏组织 (hECT) 模型系统的过程,用于组织功能的纵向测量。并行培养六个具有线性条形几何形状的 hECT,每个 hECT 悬挂在连接到 PDMS 架上的一对力感应聚二甲基硅氧烷 (PDMS) 柱上。每个帖子都有一个黑色的PDMS稳定帖子跟踪器(SPoT),这是一项新功能,可提高易用性、通量、组织保留率和数据质量。该形状允许对柱子挠度进行可靠的光学跟踪,从而产生具有绝对主动和被动张力的改进的抽搐力跟踪。帽的几何形状消除了由于 hECT 从柱子上滑落而导致的组织失效,并且由于它们涉及 PDMS 支架制造后的第二步,因此可以将 SPoT 添加到现有的基于 PDMS 柱子的设计中,而无需对生物反应器制造过程进行重大更改。

该系统用于证明在生理温度下测量 hECT 功能的重要性,并在数据采集过程中显示稳定的组织功能。总之,我们描述了一种最先进的模型系统,该系统再现了关键的生理条件,以提高体 应用工程心脏组织的生物保真度、效率和严谨性。

Introduction

工程心脏组织模型具有多种几何形状和配置,用于概括传统二维细胞培养难以实现的天然心脏生态位的各个方面。最常见的配置之一是线性组织条两端都有柔性锚点以诱导组织自组装,并为组织提供定义的预紧力和由此产生的抽搐力的读数 1,2,3,4,5,6,7,8,9,10,1112131415161718192021
22,23,24,25,26,27.通过对组织缩短的光学跟踪,并使用弹性束理论根据测得的挠度和锚栓的弹簧常数计算力,可以稳健地确定产生的力 1,2,3,4,5,6,7,8,9,10,11121314151617181920
21,22,25,26,28。

然而,心脏组织工程仍然是一个不断发展的领域,仍然存在一些挑战。每个模型系统10,29,30,31都需要专用设备,例如定制的生物反应器和功能评估设备。由于劳动密集型方案、大量细胞和组织脆性,这些构建体的微环境的大小和复杂性通常受到低通量的限制。为了解决这个问题,一些研究小组已经转向制造仅包含数百或数千个细胞的微组织,以促进对药物发现有用的高通量测定。然而,这种缩小的规模使功能12的准确评估变得复杂,消除了天然心脏生态位的关键方面(如营养/氧扩散梯度和复杂结构36),并限制了可用于后续分子和结构分析的材料数量(通常需要组织混合)。表1总结了文献1,2,3,4,5,6,7,8,9,10,11,12,13,14,15 16,17,18,19,20
21,22,23,24,25,26,37,38,39,40。

每个组织的细胞数 每块板的组织 板格式 锚定功能 功能数据采集方法 共享媒体浴? 功能测量-
原地?
吉田 (ECT)38 400万 6 改良的 6 孔板* 力传感器 直接力测量
陈 (hESC-CM-ECT)26 310 千米 6 定制 6 孔培养皿 PDMS帖子 直接力测量 是的
范伯格 (dyn-EHT)16 150万 6 定制 6 孔培养皿 PDMS线 组织形状 是的
RADISIC(生物线)39、40 110 千米 8 高分子线材 线材形状 是的 是的
Costa(单 hECT)1, 2 1-200万 4** 10 厘米培养皿** PDMS帖子 光学偏转(边缘/物体跟踪) 是的 是的
Costa(多 hECT)3–9 500 K-100万 6 6厘米培养皿 PDMS帖子 光学偏转(边缘/物体跟踪) 是的 是的
Costa(多 hECT 带 SPoT) 100万 6 6厘米培养皿 带黑色大写字母的 PDMS 帖子 光学偏转(物体跟踪) 是的 是的
帕西尔掀背/两厢车(EHT)17 245 千米 36 12孔板 带黑色大写字母的 PDMS 帖子 光学偏转(物体跟踪) 是的 是的
Vunjak-Novakovic13, 18 100万 12 6厘米培养皿 带大盖的 PDMS 柱 光学偏转(边缘检测) 是的 是的
Vunjak-Novakovic(MilliPillar)14 550 千米 6 定制 6 孔培养皿 带大盖的 PDMS 柱 光学偏转(物体跟踪);钙成像 是的
埃申哈根 (EHT)10, 19–21 100万 12 12孔板 带大盖的 PDMS 柱 光学偏转(后偏转的边缘检测);钙成像 是的
赞德斯特拉 (CaMiRi)22 25-150 千米 96 96孔板 带钩子的PDMS柱 光学偏转(边缘检测) 是的
穆里23, 24 900 千米 24 24孔板 带盖的PDMS接线柱,集成磁铁 磁性传感器 是的
帝国 (μTUG)11, 12, 25 定义 156 156孔培养皿 带盖的PDMS接线柱,集成磁铁 光学跟踪(荧光珠) 是的 是的

表1:文献中一些线性工程心脏组织模型的特征。 线性工程心脏组织模型在大小、通量、锚定特征设计、共享介质浴的便利性以及对用于功能表征的单独肌肉浴系统的要求方面各不相同。* 研究人员使用了基于标准 6 孔板尺寸的市售工程组织系统。** 一种模块化系统,其中单组织生物反应器以所需的数量和位置锚定在任何塑料培养皿上。

本文描述了构建我们建立的线性人类工程心脏组织 (hECT) 模型的最新协议1,2,3,4,5,6,7,8,9,15,27 以及评估 hECT 收缩功能的方法。每个多组织生物反应器在共享培养基浴中最多可容纳 6 个 hECT,并由两个由有机硅弹性体聚二甲基硅氧烷 (PDMS) 制成的“架”件组成,安装在刚性聚砜框架上。每个PDMS机架包含六个直径为0.5 mm,长为3.25 mm的柔性集成力传感柱,两个机架共同提供六对立柱,每个柱可容纳一个hECT。生物反应器的倒置有助于克服由于培养基中的水冷凝或气液界面弯月面的变形而对hECT的可视化的任何障碍。hECT 的每次收缩都会导致集成端柱的偏转,并且偏转信号的光学测量被处理成表示 hECT 收缩函数的力与时间的追踪 1,2,3,4,5,6,7,8,9,15,27 .与通常用于这种大小组织的单组织生物反应器相比,多组织设计提高了实验通量,并能够研究具有潜在不同细胞组成的相邻组织之间的旁分泌信号传导。该系统已在已发表的研究中得到验证,这些研究描述了疾病建模 4,8、旁分泌信号转导 6,7、异细胞培养 5,9 和治疗筛查 7,9 中的应用。

在该系统中,hECT 设计为长约 6 mm,直径约 0.5 mm,以便以低噪声对力测量进行稳健的光学跟踪。此外,扩散梯度和细胞组织等组织复杂性的各个方面都与每个组织 100 万个细胞的可管理要求相平衡。使用标准CCD相机技术,低至1 μN的力(表示小于5 μm的偏转后)会产生清晰的信号,确保即使是极弱的收缩功能,如某些hECT疾病模型所观察到的那样,也可以准确测量。这也有助于对抽搐力曲线进行详细分析,从而能够对多达 16 个收缩力指标41 进行高内涵分析,包括发展力、收缩率 (+dF/dt) 和松弛率 (−dF/dt) 以及节拍率变异性。

该协议从制造生物反应器组件的说明开始。特别注意最大限度地提高hECT产量,减少组织功能的技术差异,并优化组织评估的质量和深度的步骤。大多数心脏组织工程研究没有报告制造和长期测试期间的组织损失率,尽管这是该领域众所周知的挑战,并降低了研究的通量和效率27。这里描述的组织工程方法经过多年的改进,以确保所有hECT在大多数生物反应器中保留(无论PDMS架是如何制造的)。然而,即使是 5%-20% 的组织损失也会显着影响统计功效,特别是在受可用心肌细胞数量限制的小型实验中(例如,由于某些患病细胞系的分化挑战4 或由于商业购买的心肌细胞的高成本),或受治疗条件(例如,各种治疗化合物的可用性有限或成本高)。

该协议描述了稳定柱跟踪器(SPoTs)的制造,这是PDMS机架的一个新功能,其功能是固定hECT27的力感应柱末端的盖子。它展示了帽的几何形状如何显着减少因掉落或拉下柱子而造成的 hECT 损失,从而为培养具有更多刚度和张力的 hECT 开辟了新的机会,这在无盖柱上培养具有挑战性。此外,SPoT提供了一个高对比度的物体,通过一致且定义明确的形状27来改善hECT收缩的光学跟踪。接下来是根据先前发表的方案 3,42,43 描述培养人诱导多能干细胞 (iPSC) 和心肌细胞分化,并解释 hECT 制造、培养和功能测量。

本文还讨论了在生理温度下测量组织功能的必要性。人心肌(胎儿以及成人健康和患病组织)以及来自多种动物物种(包括大鼠、猫、小鼠、雪貂和兔子)的心脏组织44,45,与生理温度相比,在28°C-32°C的温度下,频率匹配的抽搐力显着增加 – 这种现象称为低温正性肌力4546.然而,温度对工程心肌组织功能的影响仍未得到充分研究。文献中许多最近的工程心脏组织模型被设计为在37°C下进行功能评估,以接近生理条件13,14,37。然而,据我们所知,尚未系统地研究温度对工程心脏组织产生的力的影响。该协议描述了一种起搏电极设计,该设计可最大限度地减少测试期间的热损失,并允许将绝缘加热元件合并到设置中以进行功能测量,这可以将 hECT 保持在生理温度而不会影响无菌性 27。然后,我们报告了温度对hECT功能的一些观察到的影响,包括对产生的力,自发跳动频率,+dF / dt和−dF / dt。总而言之,本文提供了制造这种多组织力感应生物反应器系统所需的细节,以制造人类工程心脏组织并评估其收缩功能,并提供了一组数据,为室温和 37 °C 下的测量结果提供了比较基础27

Protocol

该协议使用了去识别化的 iPSC 系 SkiPS 31.3(最初使用来自健康 45 岁男性的真皮成纤维细胞重新编程)47,因此,根据该机构的人类研究伦理委员会指南,免于特定的机构审查委员会批准。在无菌条件下,在HEPA过滤的II类生物安全柜或层流工作台中进行所有细胞和hECT操作。通过0.22μm过滤器过滤对所有非无菌溶液进行灭菌,并将所有细胞和hECT保持在37°C,95%相对湿度和5%CO2?…

Representative Results

按照上述方案,心肌细胞从我们 9,15 组先前使用的健康 iPSC 系中产生,并在培养 8-61 天后制成 hECT。图9A显示了从底部观察的hECT的代表性图像,这些图像是在没有(顶部)和(底部)SPoT的情况下创建的。在hECT制备后37天至52天之间,在室温(23°C)和生理温度(36°C)下进行功能测量。在PDMS机架的制造过程中,我们已经证明,有经?…

Discussion

文献中发表了许多线性工程心脏组织模型,其中一些在表1中进行了描述。一些模型涉及组织力的直接测量,但这些模型通常需要将结构转移到单独的肌肉浴38中。大多数型号的设计将组织永久固定在两端,最常见的是PDMS柱1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16 <sup class="xr…

Declarações

The authors have nothing to disclose.

Acknowledgements

作者感谢Timothy Cashman博士之前对这种方法所做的工作。这项研究得到了美国国立卫生研究院 (NIH)(R01-HL132226 和 K01 HL133424)和 Leducq 基金会国际卓越网络计划 (CURE-PLaN) 的资助。

Materials

0.25 mm diamete 304 Stainless Steel Wire McMaster Carr 6517K61 
0.25% trypsin-EDTA Gibco 25200056
1.7 mL Microtubes Axygen MCT-175-C
10 cm dishes (20 mm tall) Corning 353003
10 mL Serological Pipette Drummond 6-000-010
10 N NaOH Fisher Scientific SS225-1 dilute 1:10 in sterile distilled water
10X Modified Eagle Medium Sigma Aldrich M0275
20 – 200 μL Micropipette Eppendorf 3123000055
200 μL MicroPipette Tips VWR 76322-150
5 mL Serological Pipette Drummond 6-000-005
50 mL Conical Centrifuge Tubes Falcon 352070
6 cm Petri Dish Corning 353002
6 Watt LED Dual Gooseneck Illuminator AmScope  LED-6W 
6-Well Plates Corning 353046
90 degree angle mirror Edmund Optics 45-594
Acrylic bonding glue SCIGRIP #4
Adjustable 10 cm x 10 cm jack Fisher Scientific 14-673-50
Aluminum 6061 McMaster Carr 9008K82
A-Plan 10X Objective Lens ZEISS 1020-863
Autoclave Bags Propper 21002
B-27 supplement ThermoFisher 17504044
B-27 supplement (without insulin) ThermoFisher A1895601
Benchtop Centrifuge Eppendorf 5810 R
Black ABS Ultimaker 2.85 mm wide
Bovine Collagen I Gibco A1064401
CHIR99021 Tocris 4423
Class II Biosafety Cabinet Labconco 3430009
Clear Acrylic Sheeting estreetplastics 1002502436 6.25 mm thick
CNC Vertical Mill Haas VF-1
Conductive Graphite Bars McMaster Carr 1763T33
Dissection microscope Olympus SZ61
Dulbecco's Modified Eagle Medium/Ham's F-12 Nutrient Mix ThermoFisher 11330032
Ethanol Fisher Scientific A4094 Dilute to 70% in water
EVE Automated Cell counter NanoEntek E1000
EVE Cell Counting Slide NanoEntek EVS-050
Fetal Bovine Serum Life Technologies 10438026
Fine Curved Forceps Fine Science Tools 11253-25
Forma Series II Water Jacketed CO2 Incubator Thermo Electron Corporation 3110 AKA "incubator". With HEPA class 100 filter
Fusion360 software Autodesk AKA "CAD software"
Glass Hemocytometer Reichert 1475 0.1 mm deep
HEPES Sigma Aldrich H3784
hESC qualified matrigel Corning 354277 AKA "basement membrane matrix". Store in frozen aliquots
High Speed CCD Camera PixelLINK P7410
Inverted Microscope Carl Zeiss Werk Axiovert 40 CFL 10X phase contrast objective
IWR-1 Selleck Chem S7086
LabView Software National Instruments 2016
Laminar flow clean bench NuAire NU-201-330 necessary for hECT functional analysis
Laptop AsusTek Strix Intel Core i& processor ,CPU 2.8GHz, 16GB RAM
Laser Cutting Machine Epilog Helix 24
Magnification headset ExcelBlades 70020 Recommended for steps requiring fine manipulations
Matlab Mathworks Version 2019b or later AKA "data analysis software"
Micro Vannas Scissors, 3 mm blade WPI Instruments 501839
Microscope Boom Stand Olympus SZ2-STU1
Penicillin-Streptomycin stock solution ThermoFisher 15140122 10,000 IU/ml penicillin; 10,000 μg/ml streptomycin
Phosphate-buffered saline without divalent cations Sigma Aldrich P3813 Diluted in distilled water to 1X and 10X concentrations
Pipette Controller Drummond 4-000-100
PixelLINK Capture OEM PixelLINK 10.2.1.6 AKA "Camera Software"
Polysulfone McMaster Carr 86735K73 translucent amber color
Polytetrafluoroethylene (PTFE) McMaster Carr 8545K176  Black, molded
ReLeSR Stem Cell Technologies 5872 AKA "iPSC dissociation media"
Rosewell Park Memorial Institute 1640 Media ThermoFisher 11875135
Silicone Sheeting SMI manufacturing glossy, 0.02 in thickness, durometer 40
Size 10/0 Blue, Green, Red, and Yellow Glass Seed Beads Michael's color should withstand autoclaving
Spatula Fisher Scientific 14-373 used for mixing PDMS
Square Pulse Stimulator  Astro-Med / Grass Technologies S88X
Stainless Steel Razoblades GEM 62-0179-CTN preferred over non-stainless steel due to lower hardness
Stemflex ThermoFisher A3349401 AKA "iPSC culture media"
Sterile distilled water ThermoFisher 5230
Sylgard 170 -  Silicone Elastomer Encapsulant Black 0.9 kg Kit Dow DOWSIL 170 2LB KIT AKA black Polydimethylsiloxane (black PDMS)
Sylgard 184 – Silicone Elastomer Clear 1 lb Kit Dow DC 184 SYLGARD 0.5KG 1.1LB KIT AKA Polydimethylsiloxane (PDMS)
Temperature-controlled heated stage Okolab H401-HG-SMU Set height to 10 cm
Thermoplastic 3D printer Ultimaker Ultimaker 3
Thiazovivin Selleck Chem S1459
Trypan Blue NanoEntek EBT-001
Vacuum Chamber Bel-Art Parts F42027-0000
Variable Speed Mini Band Saw Micro-Mark 82203
Variable Speed Miniature Drill Press Micro-Mark 82959
Vibration Isolation Table Labconco 3618000
Weighing Boats VWR 10803-140
Talon Cylinder Bench Clamp VWR 97035-528 AKA screw clamp

Referências

  1. Serrao, G. W., et al. Myocyte-depleted engineered cardiac tissues support therapeutic potential of mesenchymal stem cells. Tissue Engineering. Part A. 18 (13-14), 1322-1333 (2012).
  2. Turnbull, I. C., et al. Advancing functional engineered cardiac tissues toward a preclinical model of human myocardium. FASEB Journal. 28 (2), 644-654 (2014).
  3. Cashman, T. J., et al. Construction of defined human engineered cardiac tissues to study mechanisms of cardiac cell therapy. Journal of Visualized Experiments. (109), e53447 (2016).
  4. Stillitano, F., et al. Genomic correction of familial cardiomyopathy in human engineered cardiac tissues. European Heart Journal. 37 (43), 3282-3284 (2016).
  5. Mayourian, J., et al. Experimental and computational insight into human mesenchymal stem cell paracrine signaling and heterocellular coupling effects on cardiac contractility and arrhythmogenicity. Circulation Research. 121 (4), 411-423 (2017).
  6. Mayourian, J., et al. therapeutic paracrine modulation of cardiac excitation-contraction coupling. Circulation Research. 122 (1), 167-183 (2018).
  7. Mayourian, J., et al. Exosomal microRNA-21-5p mediates mesenchymal stem cell paracrine effects on human cardiac tissue contractility. Circulation Research. 7 (122), 933-944 (2018).
  8. Turnbull, I. C., et al. Cardiac tissue engineering models of inherited and acquired cardiomyopathies. Methods in Molecular Biology. 1816, 145-159 (2018).
  9. Murphy, J. F., et al. Adult human cardiac stem cell supplementation effectively increases contractile function and maturation in human engineered cardiac tissues. Stem Cell Research & Therapy. 10 (1), 373 (2019).
  10. Breckwoldt, K., et al. Differentiation of cardiomyocytes and generation of human engineered heart tissue. Nature Protocols. 12 (6), 1177-1197 (2017).
  11. Huang, C. Y., et al. Enhancement of human iPSC-derived cardiomyocyte maturation by chemical conditioning in a 3D environment. Journal of Molecular and Cellular Cardiology. 138, 1-11 (2020).
  12. Ramade, A., Legant, W. R., Picart, C., Chen, C. S., Boudou, T. Microfabrication of a platform to measure and manipulate the mechanics of engineered microtissues. Methods in Cell Biology. 121, 191-211 (2014).
  13. Ronaldson-Bouchard, K., et al. Engineering of human cardiac muscle electromechanically matured to an adult-like phenotype. Nature Protocols. 14 (10), 2781-2817 (2019).
  14. Tamargo, M. A., et al. milliPillar: A platform for the generation and real-time assessment of human engineered cardiac tissues. ACS Biomaterials Science & Engineering. 7 (11), 5215-5229 (2021).
  15. Ceholski, D. K., et al. CXCR4 and CXCR7 play distinct roles in cardiac lineage specification and pharmacologic β-adrenergic response. Stem Cell Research. 23, 77-86 (2017).
  16. Bliley, J. M., et al. Dynamic loading of human engineered heart tissue enhances contractile function and drives a desmosome-linked disease phenotype. Science Translational Medicine. 13 (603), (2021).
  17. Ribeiro, M. C., et al. A new versatile platform for assessment of improved cardiac performance in human-engineered heart tissues. Journal of Personalized Medicine. 12 (2), 214 (2022).
  18. Ronaldson-Bouchard, K., et al. Advanced maturation of human cardiac tissue grown from pluripotent stem cells. Nature. 556 (7700), 239-243 (2018).
  19. Mannhardt, I., et al. Human engineered heart tissue: Analysis of contractile force. Stem Cell Reports. 7 (1), 29-42 (2016).
  20. Mannhardt, I., et al. Blinded contractility analysis in hiPSC-cardiomyocytes in engineered heart tissue format: Comparison with human atrial trabeculae. Toxicological Sciences. 158 (1), 164-175 (2017).
  21. Saleem, U., et al. Force and calcium transients analysis in human engineered heart tissues reveals positive force-frequency relation at physiological frequency. Stem Cell Reports. 14 (2), 312-324 (2020).
  22. Thavandiran, N., et al. Functional arrays of human pluripotent stem cell-derived cardiac microtissues. Scientific Reports. 10 (1), 6919 (2020).
  23. Bielawski, K. S., Leonard, A., Bhandari, S., Murry, C. E., Sniadecki, N. J. Real-time force and frequency analysis of engineered human heart tissue derived from induced pluripotent stem cells using magnetic sensing. Tissue Engineering. Part C, Methods. 22 (10), 932-940 (2016).
  24. Leonard, A., et al. Afterload promotes maturation of human induced pluripotent stem cell derived cardiomyocytes in engineered heart tissues. Journal of Molecular and Cellular Cardiology. 118, 147-158 (2018).
  25. Bose, P., Huang, C. Y., Eyckmans, J., Chen, C. S., Reich, D. H. Fabrication and mechanical properties measurements of 3D microtissues for the study of cell-matrix interactions. Methods in Molecular Biology. 1722, 303-328 (2018).
  26. Zhang, W., et al. Maturation of human embryonic stem cell-derived cardiomyocytes (hESC-CMs) in 3D collagen matrix: Effects of niche cell supplementation and mechanical stimulation. Acta Biomaterialia. 49, 204-217 (2017).
  27. van Neste, C. Advances in bioreactor design and multi-dimensional analysis for assessing maturation phenotype of human engineered cardiac tissues. PhD thesis. Icahn School of Medicine at Mount Sinai. , (2022).
  28. Sala, L., et al. MUSCLEMOTION: A versatile open software tool to quantify cardiomyocyte and cardiac muscle contraction in vitro and in vivo. Circulation Research. 122 (3), e5-e16 (2018).
  29. Salazar, B. H., Cashion, A. T., Dennis, R. G., Birla, R. K. Development of a cyclic strain bioreactor for mechanical enhancement and assessment of bioengineered myocardial constructs. Cardiovascular Engineering and Technology. 6 (4), 533-545 (2015).
  30. Putame, G., et al. Application of 3D printing technology for design and manufacturing of customized components for a mechanical stretching bioreactor. Journal of Healthcare Engineering. 2019, 3957931 (2019).
  31. Akintewe, O. O., Roberts, E. G., Rim, N. -. G., Ferguson, M. A. H., Wong, J. Y. Design approaches to myocardial and vascular tissue engineering. Annual Review of Biomedical Engineering. 19, 389-414 (2017).
  32. Chen, G., et al. Phospholamban as a crucial determinant of the inotropic response of human pluripotent stem cell-derived ventricular cardiomyocytes and engineered 3-dimensional tissue constructs. Circulation. Arrhythmia and Electrophysiology. 8 (1), 193-202 (2015).
  33. Giacomelli, E., et al. Human-iPSC-derived cardiac stromal cells enhance maturation in 3D cardiac microtissues and reveal non-cardiomyocyte contributions to heart disease. Cell Stem Cell. 26 (6), 862-879 (2020).
  34. Beauchamp, P., et al. 3D co-culture of hiPSC-derived cardiomyocytes with cardiac fibroblasts improves tissue-like features of cardiac spheroids. Frontiers in Molecular Biosciences. 7, 14 (2020).
  35. Campostrini, G., et al. functional analysis and applications of isogenic three-dimensional self-aggregating cardiac microtissues from human pluripotent stem cells. Nature Protocols. 16 (4), 2213-2256 (2021).
  36. Swiatlowska, P., Iskratsch, T. Tools for studying and modulating (cardiac muscle) cell mechanics and mechanosensing across the scales. Biophysical Reviews. 13 (5), 611-623 (2021).
  37. Zhao, Y., et al. Engineering microenvironment for human cardiac tissue assembly in heart-on-a-chip platform. Matrix Biology. 85-86, 189-204 (2020).
  38. Fujiwara, Y., Deguchi, K., Miki, K., Nishimoto, T., Yoshida, Y. A method for contraction force measurement of hiPSC-derived engineered cardiac tissues. Methods in Molecular Biology. 2320, 171-180 (2021).
  39. Wang, E. Y., et al. Biowire model of interstitial and focal cardiac fibrosis. ACS Central Science. 5 (7), 1146-1158 (2019).
  40. Zhao, Y., et al. A platform for generation of chamber-specific cardiac tissues and disease modeling. Cell. 176 (4), 913-927 (2019).
  41. Lee, E. K., et al. Machine learning of human pluripotent stem cell-derived engineered cardiac tissue contractility for automated drug classification. Stem Cell Reports. 9 (5), 1560-1572 (2017).
  42. Batalov, I., Feinberg, A. W. Differentiation of cardiomyocytes from human pluripotent stem cells using monolayer culture. Biomarker Insights. 10, 71-76 (2015).
  43. Lian, X., et al. Robust cardiomyocyte differentiation from human pluripotent stem cells via temporal modulation of canonical Wnt signaling. Proceedings of the National Academy of Sciences of the United States of America. 109 (27), E1848-E1857 (2012).
  44. Penefsky, Z. J., Buckley, N. M., Litwak, R. S. Effect of temperature and calcium on force-frequency relationships in mammalian ventricular myocardium. Pflugers Archiv. 332 (4), 271-282 (1972).
  45. Bers, D. M. . Excitation-Contraction Coupling and Cardiac Contractile Force. , (2001).
  46. Kanaya, N., Gable, B., Wickley, P. J., Murray, P. A., Damron, D. S. Experimental conditions are important determinants of cardiac inotropic effects of propofol. Anesthesiology. 103 (5), 1026-1034 (2005).
  47. Galende, E., et al. Amniotic fluid cells are more efficiently reprogrammed to pluripotency than adult cells. Cellular Reprogramming. 12 (2), 117-125 (2010).
  48. Wacker-Gussmann, A., Strasburger, J. F., Cuneo, B. F., Wakai, R. T. Diagnosis and treatment of fetal arrhythmia. American Journal of Perinatology. 31 (7), 617-628 (2014).
  49. Federmann, M., Hess, O. M. Differentiation between systolic and diastolic dysfunction. European Heart Journal. 15, 2-6 (1994).
  50. Knight, W. E., et al. Maturation of pluripotent stem cell-derived cardiomyocytes enables modeling of human hypertrophic cardiomyopathy. Stem Cell Reports. 16 (3), 519-533 (2021).
  51. Ma, Z., et al. Contractile deficits in engineered cardiac microtissues as a result of MYBPC3 deficiency and mechanical overload. Nature Biomedical Engineering. 2 (12), 955-967 (2018).
  52. de Lange, W. J., et al. Human iPSC-engineered cardiac tissue platform faithfully models important cardiac physiology. American Journal of Physiology. Heart and Circulatory Physiology. 320 (4), H1670-H1686 (2021).
  53. Hiranandani, N., Varian, K. D., Monasky, M. M., Janssen, P. M. L. Frequency-dependent contractile response of isolated cardiac trabeculae under hypo-, normo-, and hyperthermic conditions. Journal of Applied Physiology. 100 (5), 1727-1732 (2006).
  54. Puglisi, J. L., Bassani, R. A., Bassani, J. W., Amin, J. N., Bers, D. M. Temperature and relative contributions of Ca transport systems in cardiac myocyte relaxation. The American Journal of Physiology. 270 (5), H1772-H1778 (1996).
  55. Puglisi, J. L., Yuan, W., Bassani, J. W., Bers, D. M. Ca(2+) influx through Ca(2+) channels in rabbit ventricular myocytes during action potential clamp: Influence of temperature. Circulation Research. 85 (6), e7-e16 (1999).
  56. Li, R. A., et al. Bioengineering an electro-mechanically functional miniature ventricular heart chamber from human pluripotent stem cells. Biomaterials. 163, 116-127 (2018).
  57. Sharma, A., et al. Biomanufacturing in low Earth orbit for regenerative medicine. Stem Cell Reports. 17 (1), 1-13 (2022).
  58. Strauss, D. G., Wu, W. W., Li, Z., Koerner, J., Garnett, C. Translational models and tools to reduce clinical trials and improve regulatory decision making for QTc and proarrhythmia risk (ICH E14/S7B updates). Clinical Pharmacology & Therapeutics. 109 (2), 319-333 (2021).
  59. Gintant, G., et al. Repolarization studies using human stem cell-derived cardiomyocytes: Validation studies and best practice recommendations. Regulatory Toxicology and Pharmacology. 117, 104756 (2020).
check_url/pt/64368?article_type=t

Play Video

Citar este artigo
van Neste, C. C., Wiley, K. A., Chang, S. W., Borrello, J., Turnbull, I. C., Costa, K. D. Designing a Bioreactor to Improve Data Acquisition and Model Throughput of Engineered Cardiac Tissues. J. Vis. Exp. (196), e64368, doi:10.3791/64368 (2023).

View Video