Summary

Visualisere Clathrin endocytose af G-protein-koblede receptorer på Single-begivenhed opløsning via TIRF Mikroskopi

Published: October 20, 2014
doi:

Summary

Clathrin-mediated endocytosis, a rapid and highly dynamic process internalizes many proteins, including signaling receptors. The protocol described here directly visualizes the kinetics of individual endocytic events. This is essential for understanding how core members of the endocytic machinery coordinate with each other, and how protein cargo influence this process.

Abstract

Many important signaling receptors are internalized through the well-studied process of clathrin-mediated endocytosis (CME). Traditional cell biological assays, measuring global changes in endocytosis, have identified over 30 known components participating in CME, and biochemical studies have generated an interaction map of many of these components. It is becoming increasingly clear, however, that CME is a highly dynamic process whose regulation is complex and delicate. In this manuscript, we describe the use of Total Internal Reflection Fluorescence (TIRF) microscopy to directly visualize the dynamics of components of the clathrin-mediated endocytic machinery, in real time in living cells, at the level of individual events that mediate this process. This approach is essential to elucidate the subtle changes that can alter endocytosis without globally blocking it, as is seen with physiological regulation. We will focus on using this technique to analyze an area of emerging interest, the role of cargo composition in modulating the dynamics of distinct clathrin-coated pits (CCPs). This protocol is compatible with a variety of widely available fluorescence probes, and may be applied to visualizing the dynamics of many cargo molecules that are internalized from the cell surface.

Introduction

Processen med clathrin-medieret endocytose (CME) er afhængig af den vel-timede ankomst af de mange komponenter i clathrin-medieret endocytiske maskiner at samle gods og manipulere plasmamembranen i vesiklerne 1-3. CME initieres ved membran deformere og fragt-adapter proteiner, der kommer sammen på spirende steder endocytose 1. Disse proteiner rekruttere kappeprotein clathrin, som samler i en bur-lignende struktur, der danner clathrin-coated pit (CCP) 4. Når CCP er samlet i en kugleform, membran spaltning, primært gennem indsats af det store GTPase, dynamin, genererer gratis clathrin-coatede vesikler (CCVS) 5,6. Denne internalisering udløser hurtig afmontering af clathrin frakke, så komponenter, der skal genbruges til flere runder af CME.

Opdagelsen og karakterisering af de involverede i CME-proteiner er blevet forankret i traditionel Biochemical, genetiske og mikroskopiteknikker 4-6,8. Disse analyser har belyst roller og interaktion punkter i disse endocytiske komponenter. Selvom meget nyttige til at fastlægge væsentlige dele af maskiner menneskehandel, er disse analyser stærkt begrænset i at opfange dynamiske opførsel CME komponenter eller koncentration last. Dette er et kritisk begrænsning, idet CME drives af koreograferede samling af sæt af protein moduler i definerede trin, og da små ændringer i dynamikken i enkelte endocytiske begivenheder kan have store kumulative konsekvenser for endocytose. Endvidere seneste data viser, at enkelte CCP'er kan variere både i sammensætning og i adfærd, hvilket tyder på, at den fysiologiske regulering af denne proces er yderst rumligt og tidsligt begrænset 9-14. Visualisere individuelle endocytiske begivenheder, derfor er vigtigt at forstå, hvorfor der er flere overflødige proteiner involveret i CME, og hvordan disse proteiner kan styres By fysiologiske signaler at regulere last internalisering.

Her beskriver vi brugen af ​​total intern refleksion Fluorescens mikroskopi (TIRFM) for at observere CME på niveauet af dynamikken i de enkelte CCP'er i levende celler. TIRFM afhængig af forskellen i brydningsindeks mellem dækglas og det flydende celler 15,16. Når excitationslys er rettet mod cellerne ved mere end den kritiske vinkel, er det internt reflekteret, hvilket skaber en kortvarig bølge, der opretholder et tyndt område af belysning strækker ca. 100 nm over dækglasset. Dette sikrer, at kun de fluorescerende molekyler inden for dette snævre område er spændt. I praksis tillader dette excitation af fluorescerende molekyler på eller i nærheden af ​​plasmamembranen, og minimerer fluorescens fra de indre dele af cellen. Dette giver en signifikant højere signal-støj-forholdet og z-aksen beslutning at visualisere events på plasmamembranen, compared til mere almindeligt anvendte transportformer såsom konventionel epifluorescens eller konfokal fluorescens mikroskopi. Vi beskriver også, ved en indledende og praktisk niveau, at anvendelsen af ​​et almindeligt anvendt billedanalyse platform analysere og kvantificere simple morfologiske træk og dynamikken i de enkelte last endocytiske begivenheder.

Protocol

1. Angivelse af Fluorescerende Tagged CME Komponenter i dyrkede celler HEK293 celler er nyttig model celler, der er blevet brugt i udstrakt grad til at studere GPCR biologi og endocytose, og derfor anvendes som modeller i denne protokol. Brug en transfektionsprotokol giver en ensartet udtryk uden overekspression og lav cytotoksicitet. Håndtere alle cellekultur i en steril laminær strømning. Fyld 4 brønde i en plade med 12 brønde med 1 ml Dulbeccos modificerede essentielle med…

Representative Results

Brug af levende celle TIRF Mikroskopi vi har optaget endocytiske dynamik μ-opioid-receptoren (MOR), en G-protein-koblet receptor (GPCR) og endocytisk adapter protein β-arrestin. Den β-arrestin-konstruktion blev transient transficeret ind i en stabilt udtrykker MOR cellelinje under anvendelse af protokollen beskrevet i figur 1, og afbildes 96 timer senere. MOR i den stabile cellelinje er N-terminalt mærket med en pH-følsom GFP. Dette fluorescerende protein kun fluorescerer i den neutrale ekstracellu…

Discussion

Her beskriver vi brugen af ​​TIRFM at visualisere clathrin endocytose (CME) på niveau med enkelte CCP'er i levende celler i realtid. CME er en hurtig og meget dynamisk begivenhed medieret af den kumulative virkning af mange rumligt og tidsligt adskilte enkelte arrangementer. De fleste analyser, der i øjeblikket bruges, såsom biokemiske målinger af internalisering ved hjælp af overflade biotinylering eller ligand binding, flow-cytometri eller fikserede celler assays måler mængden af ​​internaliserede p…

Disclosures

The authors have nothing to disclose.

Acknowledgements

The authors would like to thank Drs. C. Szalinski, H. Teng, and M. Bruchez for help with Imaris, R. Vistein, and D. Shiwarski for technical help and advice, and Dr. M von Zastrow, Dr. T Kirchhausen, Dr. D Drubin, and Dr. W Almers for reagents and helpful discussion. Funding provided by T32 grant NS007433 to SLB and NIH DA024698 and DA036086 to MAP.

Materials

Name of Material/ Equipment Company Catalog Number Comments/Description
DMEM/High Glucose with L-glutamine and sodium pyruvate Fisher Scientific  SH3024301
Dulbecco's Phosphate Buffered Saline (DPBS), no calcium, no magnesium Gibco, by Life Technologies 21600-010
EDTA Free Acid Amresco 0322-500G
Fetal Bovine Serum Gibco, by Life Technologies 10437-028
Leibovitz's L-15 Medium, no phenol red Gibco, by Life Technologies 21083-027
Opti-MEM Gibco, by Life Technologies
HEPES CellPURE by Fisher Scientific  BP2937-100
Effectene  Qiagen 301425 Transfection reagent
25 millimeter coverglass Fisher Scientific  12-545-86 
Corning cell culture treated flasks, 25cm2 Fisher Scientific  10-126-28
Cell culture 6-well plate Greiner Bio-One, by VWR 82050-896
Monoclonal ANTI-FLAG M1 Sigma Aldrich F3040-5MG
[D-Ala2, N-Me-Phe4, Gly5-ol]-Enkephalin acetate salt (DAMGO) Sigma Aldrich E7384-5MG
Alexa Fluor 647 Protein Labeling Kit Life Technologies A20173
ImageJ NIH http://rsb.info.nih.gov/ij/
Imaris Image analysis software BitPLane http://www.bitplane.com/imaris/imaris, for automated analysis
Nikon Eclipse Ti inverted microscope and required accessories including filter cubes and filters Nikon
Nikon TIRF arm with required adapters for Nikon Eclipse Ti Nikon For adjusting angle of incidence
iXon+ EMCCD camera and adapters Andor

References

  1. McMahon, H. T., Boucrot, E. Molecular mechanism and physiological functions of clathrin-mediated endocytosis. Nature Reviews Molecular Cell Biology. 12 (8), 517-533 (2011).
  2. Kaksonen, M., Toret, C. P., Drubin, D. G. A Modular Design for the Clathrin- and Actin-Mediated Endocytosis Machinery. Cell. 123 (2), (2005).
  3. Taylor, M. J., Perrais, D., Merrifield, C. J. A High Precision Survey of the Molecular Dynamics of Mammalian Clathrin-Mediated Endocytosis. PLoS Biology. 9 (3), (2011).
  4. Ungewickell, E., Branton, D. Assembly units of clathrin coats. Nature. 289 (5796), 420-422 (1981).
  5. Bliek, A. M., Meyerowrtz, E. M. Dynamin-like protein encoded by the Drosophila shibire gene associated with vesicular traffic. Nature. 351 (6325), (1991).
  6. Hinshaw, J. E., Schmid, S. L. Dynamin self-assembles into rings suggesting a mechanism for coated vesicle budding. Nature. 374 (6518), (1995).
  7. Merrifield, C. J., Perrais, D., Zenisek, D. Coupling between Clathrin-Coated-Pit Invagination, Cortactin Recruitment, and Membrane Scission Observed in Live Cells. Cell. 121 (4), 593-606 (2005).
  8. Grabs, D., Slepnev, V. I., et al. The SH3 domain of amphiphysin binds the proline-rich domain of dynamin at a single site that defines a new SH3 binding consensus sequence. The Journal of biological chemistry. 272 (20), 13419-13425 (1997).
  9. Tosoni, D., Puri, C., et al. TTP Specifically Regulates the Internalization of the Transferrin Receptor. Cell. 123 (5), 875-888 (2005).
  10. Puthenveedu, M. A., von Zastrow, M. Cargo Regulates Clathrin-Coated Pit Dynamics. Cell. 127 (1), 113-124 (2006).
  11. Soohoo, A. L., Puthenveedu, M. A. Divergent modes for cargo-mediated control of clathrin-coated pit dynamics. Molecular Biology of the Cell. 24 (11), 1725-1734 (2013).
  12. Posor, Y., Eichhorn-Gruenig, M., et al. Spatiotemporal control of endocytosis by phosphatidylinositol-3,4-bisphosphate. Nature. 10, (2013).
  13. Mettlen, M., Stoeber, M., Loerke, D., Antonescu, C. N., Danuser, G., Schmid, S. L. Endocytic accessory proteins are functionally distinguished by their differential effects on the maturation of clathrin-coated pits. Molecular Biology of the Cell. 20 (14), 3251-3260 (2009).
  14. Loerke, D., Mettlen, M., et al. Cargo and dynamin regulate clathrin-coated pit maturation. PLoS Biology. 7 (3), (2009).
  15. Axelrod, D. Cell-substrate contacts illuminated by total internal reflection fluorescence. The Journal of Cell Biology. 89 (1), 141-145 (1981).
  16. Merrifield, C. J., Feldman, M. E., Wan, L., Almers, W. Imaging actin and dynamin recruitment during invagination of single clathrin-coated pits. Nature Cell Biology. 4 (9), 691-698 (2002).
  17. Ehrlich, M., Boll, W., et al. Endocytosis by random initiation and stabilization of clathrin-coated pits. Cell. 118 (5), 591-605 (2004).
  18. Yarar, D., Waterman-Storer, C. M., Schmid, S. L. A dynamic actin cytoskeleton functions at multiple stages of clathrin-mediated endocytosis. Molecular Biology of the Cell. 16 (2), 964-975 (2005).
  19. Rappoport, J. Z., Kemal, S., Benmerah, A., Simon, S. M. Dynamics of clathrin and adaptor proteins during endocytosis. American journal of physiology. Cell physiology. 291 (5), (2006).
  20. Doyon, J. B., Zeitler, B., et al. Rapid and efficient clathrin-mediated endocytosis revealed in genome-edited mammalian cells. Nature Cell Biology. 13 (3), 331-337 (2011).
  21. Hopp, T. P., Prickett, K. S., et al. A Short Polypeptide Marker Sequence Useful for Recombinant Protein Identification and Purification. Bio/Technology. 6 (10), 1204-1210 (1988).
  22. Miesenböck, G., De Angelis, D. A., Rothman, J. E. Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature. 394 (6689), 192-195 (1998).
  23. Saffarian, S., Cocucci, E., Kirchhausen, T. Distinct Dynamics of Endocytic Clathrin-Coated Pits and Coated Plaques. PLoS Biology. 7 (9), (2009).
  24. Yudowski, G., Puthenveedu, M., Henry, A., von Zastrow, M. Cargo-Mediated Regulation of a Rapid Rab4-Dependent Recycling Pathway. Molecular Biology of the Cell. 1, 1-11 (2009).
  25. Batchelder, E. M., Yarar, D. Differential Requirements for Clathrin-dependent Endocytosis at Sites of Cell-Substrate Adhesion. Molecular Biology of the Cell. 21 (17), 3070-3079 (2010).
  26. Mattheyses, A. L., Atkinson, C. E., Simon, S. M. Imaging Single Endocytic Events Reveals Diversity in Clathrin, Dynamin and Vesicle Dynamics. Traffic. 12 (10), 1394-1406 (2011).
  27. Aguet, F., Antonescu, C. N., Mettlen, M., Schmid, S. L., Danuser, G. Advances in analysis of low signal-to-noise images link dynamin and AP2 to the functions of an endocytic checkpoint. Dev Cell. 26 (3), 279-291 (2013).
  28. Boucrot, E., Howes, M. T., Kirchhausen, T., Parton, R. G. Redistribution of caveolae during mitosis. J Cell Sci. 124, 1965-1972 (2011).
  29. Bhaya, D., Davison, M., Barrangou, R. CRISPR-Cas systems in bacteria and archaea: versatile small RNAs for adaptive defense and regulation. Annual review of genetics. 45, 273-297 (2011).
  30. Boch, J., Scholze, H., et al. Breaking the Code of DNA Binding Specificity of TAL-Type. III Effectors. Science. 326 (5959), 1509-1512 (2009).

Play Video

Cite This Article
Soohoo, A. L., Bowersox, S. L., Puthenveedu, M. A. Visualizing Clathrin-mediated Endocytosis of G Protein-coupled Receptors at Single-event Resolution via TIRF Microscopy. J. Vis. Exp. (92), e51805, doi:10.3791/51805 (2014).

View Video