Summary

Light-sheet Fluorescence Microscopy for the Study of the Murine Heart

Published: September 15, 2018
doi:

Summary

This study uses a dual-sided illumination light-sheet fluorescence microscopy (LSFM) technique combined with optical clearing to study the murine heart.

Abstract

Light-sheet fluorescence microscopy has been widely used for rapid image acquisition with a high axial resolution from micrometer to millimeter scale. Traditional light-sheet techniques involve the use of a single illumination beam directed orthogonally at sample tissue. Images of large samples that are produced using a single illumination beam contain stripes or artifacts and suffer from a reduced resolution due to the scattering and absorption of light by the tissue. This study uses a dual-sided illumination beam and a simplified CLARITY optical clearing technique for the murine heart. These techniques allow for deeper imaging by removing lipids from the heart and produce a large field of imaging, greater than 10 x 10 x 10 mm3. As a result, this strategy enables us to quantify the ventricular dimensions, track the cardiac lineage, and localize the spatial distribution of cardiac-specific proteins and ion-channels from the post-natal to adult mouse hearts with sufficient contrast and resolution.

Introduction

Light-sheet fluorescence microscopy was a technique first developed in 1903 and is used today as a method to study gene expression and also to produce 3-D or 4-D models of tissue samples1,2,3. This imaging method uses a thin sheet of light to illuminate a single plane of a sample so that only that plane is captured by the detector. The sample can then be moved in the axial-direction to capture each layer, one section at a time, and render a 3-D model after the post-processing of the acquired images4. However, due to the absorption and scattering of photons, LSFM has been limited to samples that are either a few microns thick or are optically transparent1.

The limitations of LSFM have led to extensive studies of organisms that have tissues that are optically transparent, such as the zebrafish. Studies involving cardiac development and differentiation are often conducted on zebrafish since there are conserved genes between humans and zebrafish5,6. Although these studies have led to advances in cardiac research related to cardiomyopathies6,7, there is still a need to conduct similar research on higher-level organisms such as mammals.

Mammalian cardiac tissue presents a challenge due to the thickness and opacity of the tissue, the absorption due to hemoglobin in red blood cells, and the striping that occurs due to single-sided illumination of the sample under traditional LSFM methods1,8. To compensate for these limitations, we proposed to use dual-sided illumination and a simplified version of the CLARITY technique9 combined with a refractive index matching solution (RIMS). Therefore, this system allows for the imaging of a sample that is greater than 10 x 10 x 10 mm3 while maintaining a good quality resolution in the axial and lateral planes8.

This system was first calibrated using fluorescent beads arranged in different configurations within the glass tubing. Then, the system was used to image post-natal and adult murine hearts. First, the post-natal mouse heart was imaged at 7 days (P7) to reveal the ventricular cavity, the thickness of the ventricular wall, the valve structures, and the presence of trabeculation. Secondly, a study was conducted to identify cells that would differentiate into cardiomyocytes by using a post-natal mouse heart at 1 day (P1) with Cre-labeled cardiomyocytes and yellow fluorescent protein (YFP). Finally, adult mice at 7.5 months were imaged to observe the presence of renal outer medullary potassium (ROMK) channels after gene therapy8.

Protocol

All the procedures involving the use of animals have been approved by the Institutional Review Committees (IACUC) at the University of California, Los Angeles, California. 1. Imaging System Setup Note: See Figure 1 and Figure 2. Retrieve a continuous wave (CW) laser with 3 wavelengths: 405 nm, 473 nm, and 532 nm. Place 2 mirrors (M1 and M2) 150 mm apart and align them with their mirror planes at…

Representative Results

The technique described here used a dual-sided illumination beam combined with an optical clearing of mouse heart tissue samples to achieve a deeper imaging depth and a larger imaging volume with sufficient imaging resolution (Figure 1). To calibrate the system, fluorescent beads were placed inside the glass tubing and within the imaging system. The beads were then imaged and visualized in the x-y plane, y-z plane, and in the x-z plane, to obtain the point sp…

Discussion

The LSFM system and technique described here utilizes a dual-sided illumination beam combined with an optical clearing to image the mouse heart at post-natal and adult stages of its development. A traditional single illumination beam suffers from photon scattering and absorption through thicker and larger tissue samples1,3. The dual-sided beams provide a more even illumination of the sample, thereby minimizing the effect of striping and other artifacts that are o…

Disclosures

The authors have nothing to disclose.

Acknowledgements

The authors would like to express gratitude to Thao Nguyen and Atsushi Nakano from UCLA for providing the mice sample to image. This study was supported by grants NIH HL118650 (to Tzung K. Hsiai), HL083015 (to Tzung K. Hsiai), HD069305 (to N. C. Chi and Tzung K. Hsiai.), HL111437 (to Tzung K. Hsiai and N. C. Chi), HL129727 (to Tzung K. Hsiai), and University of Texas System STARS funding (to Juhyun Lee).

Materials

CW Laser Laserglow Technologies LMM-GBV1-PF3-00300-05 Excitation of fluorophores
Neutral density filter Thorlabs NDC-50C-4M Controls amount of light entering system
Achromatic beam expander Thorlabs GBE05-A Expands the beam of light
Mechanical slit Thorlabs VA100C Controls width of beam
Beam splitter Thorlabs BS013 Forms dual-illumination beam
Stereo microscope with 1X objective lense Olympus MVX10 Used for observation of sample
ORCA-Flash4.0 LT sCMOS camera Hamamatsu Photonics C11440-42U Used to capture Images
Acrylonitrile butadiene styrene (ABS) Stratasys uPrint Material used to 3-D print a sample holder
Fluorescent polystyrene beads Spherotech Inc PP-05-10 Used for imaging system calibration
Borosilicate glass tubing Corning Pyrex 7740 Tubing for sample embedding
Glycerol Fisher Scientific BP229-4 Fill for sample chamber
Phosphate-buffered saline Fisher Scientific BP39920 Rinse solution for mouse hearts
Paraformaldehyde Electron microscopy sciences RT-15700 First incubation solution
Acrylamide Wako Chemicals AAL-107 Mixed with 2,2'-Azobis dihydrochloride for second incubation solution for mouse hearts
2,2'-Azobis dihydrochloride Wako Chemicals VA-044 Mixed with Acrylamide for second incubation solution for mouse hearts
Sodium dodecyl sulfate  Sigma Aldrich 71725 Mixed with Boric acid for third incubtion solution for mouse hearts
Boric acid Fischer Scientific A74-1 Mixed with Sodium dodecyl sulfate for third incubtion solution for mouse hearts
Sigma D2158 Sigma Aldrich D2158 Mixed with PB, Tween-20, and Sodium azide as a refractive index matching solution
Tween-20 Sigma Aldrich 11332465001 Mixed with Sigma D2158, PB, and Sodium azide as a refractive index matching solution
Sodium azide Sigma Aldrich S2002 Mixed with Sigma D2158, PB, and Tween-20 as a refractive index matching solution
Adeno-associated virus vector 9 with a cardiac-specific Troponin T promoter tagged with GFP Vector Biolabs VB2045 Expresses GFP when bound to ROMK
DC Servo Motor Actuator Thorlabs Z825B Used for movement of sample in axial direction within light sheet
K-Cube Brushed DC Servo Motor Controller Thorlabs KDC101 Connects to motor actuator and controls movement of the actuator
Amira FEI Software N/A Visualization software for producing 2-D and 3-D images

References

  1. Richardson, D. S., Lichtman, J. W. Clarifying tissue clearing. Cell. 162 (2), 246-257 (2015).
  2. Lee, J., et al. 4-Dimensional light-sheet microscopy to elucidate shear stress modulation of cardiac trabeculation. Journal of Clinical Investigation. 126 (5), 1679-1690 (2016).
  3. Huisken, J., Swoger, J., Del Bene, F., Wittbrodt, J., Stelzer, E. Optical sectioning deep inside live embryos by selective plane illumination microscopy. Science. 305 (5686), 1007-1009 (2004).
  4. Huisken, J., Stainier, D. Y. Selective plane illumination microscopy techniques in developmental biology. Development. 136 (12), 1963-1975 (2009).
  5. Bakkers, J. Zebrafish as a model to study cardiac development and human cardiac disease. Cardiovascular Research. 91 (2), 279-288 (2011).
  6. High, F. A., Epstein, J. A. The multifaceted role of Notch in cardiac development and disease. Nature Reviews Genetics. 9 (1), 49-61 (2008).
  7. Sachinidis, A. Cardiac specific differentiation of mouse embryonic stem cells. Cardiovascular Research. 58 (2), 278-291 (2003).
  8. Ding, Y., et al. Light-sheet fluorescence imaging to localize cardiac lineage and protein distribution. Scientific Reports. 7, 42209 (2017).
  9. Tomer, R., Ye, L., Hsueh, B., Deisseroth, K. Advanced CLARITY for rapid and high-resolution imaging of intact tissues. Nature Protocols. 9 (7), 1682-1697 (2014).
  10. Robbins, N., Thompson, A., Mann, A., Blomkalns, A. L. Isolation and excision of murine aorta; a versatile technique in the study of cardiovascular disease. Journal of Visualized Experiments. (93), e52172 (2014).
  11. National Heart, L., Blood Institute, . Standard Operating Procedures (SOP’s) for Duchenne Animal Models. , (2015).
  12. Sung, K., et al. Simplified three-dimensional tissue clearing and incorporation of colorimetric phenotyping. Scientific Reports. 6, 30736 (2016).
  13. Yuan, Z., Qiao, C., Hu, P., Li, J., Xiao, X. A versatile adeno-associated virus vector producer cell line method for scalable vector production of different serotypes. Human Gene Therapy. 22 (5), 613-624 (2011).
  14. FEI, . Amira User’s Guide. , 59-138 (2017).
  15. Gao, L., et al. Noninvasive imaging of 3D dynamics in thickly fluorescent specimens beyond the diffraction limit. Cell. 151 (6), 1370-1385 (2012).
  16. Truong, T. V., Supatto, W., Koos, D. S., Choi, J. M., Fraser, S. E. Deep and fast live imaging with two-photon scanned light-sheet microscopy. Nature Methods. 8 (9), 757-760 (2011).
  17. Ding, Y., et al. Integrating light-sheet imaging with virtual reality to recapitulate developmental cardiac mechanics. JCI Insight. 2 (22), (2017).
check_url/57769?article_type=t

Play Video

Cite This Article
Ding, Y., Bailey, Z., Messerschmidt, V., Nie, J., Bryant, R., Rugonyi, S., Fei, P., Lee, J., Hsiai, T. K. Light-sheet Fluorescence Microscopy for the Study of the Murine Heart. J. Vis. Exp. (139), e57769, doi:10.3791/57769 (2018).

View Video