Summary

Using an Extracellular Flux Analyzer to Measure Changes in Glycolysis and Oxidative Phosphorylation during Mouse Sperm Capacitation

Published: January 22, 2020
doi:

Summary

We describe the application of an extracellular flux analyzer to monitor real-time changes in glycolysis and oxidative phosphorylation during mouse sperm capacitation.

Abstract

Mammalian sperm acquire fertilization capacity in the female reproductive tract in a process known as capacitation. Capacitation-associated processes require energy. There remains an ongoing debate about the sources generating the ATP which fuels sperm progressive motility, capacitation, hyperactivation, and acrosome reaction. Here, we describe the application of an extracellular flux analyzer as a tool to analyze changes in energy metabolism during mouse sperm capacitation. Using H+– and O2– sensitive fluorophores, this method allows monitoring glycolysis and oxidative phosphorylation in real-time in non-capacitated versus capacitating sperm. Using this assay in the presence of different energy substrates and/or pharmacological activators and/or inhibitors can provide important insights into the contribution of different metabolic pathways and the intersection between signaling cascades and metabolism during sperm capacitation.

Introduction

The application of mass spectrometry has revolutionized the study of metabolism. Targeted metabolic profiling and metabolomic tracing allow precise monitoring of changes in energy metabolism. However, performing metabolomics successfully requires extensive training, experienced staff, and expensive, highly sensitive mass spectrometers not readily available to every laboratory. In recent years, using an extracellular flux analyzer, such as the Seahorse XFe96 has grown popular as a surrogate method for measuring changes in energy metabolism in various cell types1,2,3,4,5.

Sperm are highly specialized motile cells; whose task is to deliver the paternal genome to the oocyte. Sperm leaving the male reproductive tract after ejaculation are still functionally immature and cannot fertilize the oocyte because they are unable to penetrate the oocytes' vestments. Sperm acquire fertilization competence as they transit through the female reproductive tract in a maturation process known as capacitation6,7. Freshly ejaculated sperm or sperm dissected from the cauda epididymis can be capacitated in vitro by incubation in defined capacitation media containing Ca2+, bicarbonate (HCO3) or a cell-permeable cAMP analog (e.g., dibutyryl-cAMP), a cholesterol acceptor (e.g., bovine serum albumin, BSA), and an energy source (e.g., glucose). During capacitation, sperm modify their motility pattern into an asymmetric flagellar beat, representing a swimming mode called hyperactivation8,9, and they become competent to undergo the acrosome reaction7, where proteolytic enzymes are released that digest the oocytes' vestments. These processes require energy, and similar to somatic cells, sperm generate ATP and other high energy compounds via glycolysis as well as mitochondrial TCA cycle and oxidative phosphorylation (oxphos)10. While multiple studies demonstrate that glycolysis is necessary and sufficient to support sperm capacitation11,12,13,14, the contribution of oxphos is less clear. Contrary to other cell types where glycolysis is physically coupled to the TCA cycle, sperm are highly compartmentalized and are thought to maintain these processes in separate flagellar compartments: the midpiece concentrates the mitochondrial machinery, whereas the key enzymes of glycolysis appear to be restricted to the principal piece15,16. This compartmentalization results in an ongoing debate about whether pyruvate produced in the principal piece by glycolysis can support mitochondrial oxphos in the midpiece, and whether ATP produced by oxphos in the midpiece would be able to diffuse sufficiently rapidly along the length of the flagellum to support the energy requirements in distal parts of the principal piece17,18,19. There is also support of a role for oxphos in sperm capacitation. Not only is oxphos more energetically favorable than glycolysis, generating 16 times more ATP than glycolysis, but midpiece volume and mitochondrial content are directly correlated with reproductive fitness in mammalian species which exhibit greater degrees of competition between males for mates20. Addressing these questions requires methods for examining the relative contributions of glycolysis and oxphos during sperm capacitation.

Tourmente et al. applied a 24-well extracellular flux analyzer to compare the energy metabolism of closely related mouse species with significantly different sperm performance parameters21. Instead of reporting the basal ECAR and OCR values of non-capacitated sperm, here, we adapt their method using a 96-well extracellular flux analyzer to monitor changes in energy metabolism during mouse sperm capacitation in real-time. We developed a method that allows simultaneously monitoring glycolysis and oxphos in real-time in sperm with beating flagella in up to twelve different experimental conditions by measuring the flux of oxygen (O2) and protons (H+) (Figure 1A). Due to the breakdown of pyruvate to lactate during glycolysis and the production of CO2 via the TCA-cycle, non-capacitated and capacitated sperm extrude H+ into the assay media which are detected by the extracellular flux analyzer via H+-sensitive fluorophores immobilized to the probe tip of a sensor cartridge. In parallel, O2 consumption by oxidative phosphorylation is detected via O2-sensitive fluorophores immobilized to the same probe tip (Figure 1B). Effective detection of the released H+ and consumed O2 requires a modified sperm buffer with low buffering capacity without bicarbonate or phenol red. Thus, to induce capacitation in the absence of bicarbonate, we adopted the use of a cell-permeable cAMP analog injected together with the broad-range PDE inhibitor IBMX22. Three additional independent injection ports allow the injection of pharmacological activators and/or inhibitors, which facilitates real-time detection of changes in cellular respiration and glycolysis rate due to experimental manipulation.

Protocol

Sperm are collected from 8-16-week-old CD-1 male mice. Animal experiments were approved by Weill Cornell Medicine's Institutional Animal Care and Use Committee (IACUC). 1. Day prior to assay Preparation of sensor cartridge and extracellular flux analyzer calibrant To hydrate the sensor cartridge, remove the sensor cartridge from the XFe96 Extracellular Flux Assay Kit and place the sensor cartridge upside down next to the utility plate. Fi…

Representative Results

This method uses an extracellular flux analyzer to monitor real-time changes in the rate of glycolysis and oxphos during mouse sperm capacitation. Figure 4 shows an exemplary experiment where sperm were capacitated in the presence of glucose as the only energy substrate and 2-DG and antimycin and rotenone as pharmacological modulators. The energy substrate in the extracellular flux analyzer TYH buffer and the pharmacological modulators can be freely selected …

Discussion

The loss of sperm capacitation in the absence of certain metabolic substrates or critical metabolic enzymes revealed energy metabolism as a key factor supporting successful fertilization. A metabolic switch during cell activation is a well-established concept in other cell types, however, we are just beginning to understand how sperm adapt their metabolism to the increasing energy demand during capacitation. Using an extracellular flux analyzer, we developed an easily applicable tool to monitor changes in glycolysis and …

Disclosures

The authors have nothing to disclose.

Acknowledgements

The authors wish to acknowledge support from Dr. Lavoisier Ramos-Espiritu at the Rockefeller High Throughput and Spectroscopy Resource Center.

Materials

Reagents
2-Deoxy-D-glucose Sigma-Aldrich D8375 2-DG
3-Isobutyl-1-methylxanthine Sigma-Aldrich I7018 IBMX; prepare a 500 mM stock solution in DMSO (111.1 mg/ml) and store in small aliquots
Antimycin A Sigma-Aldrich A8674 AntA; prepare a 5 mM stock solution in DMSO (2.7 mg/ml) and store in small aliquots
Bovine serum albumin Sigma-Aldrich A1470 BSA
Calcium chloride Sigma-Aldrich C1016 CaCl2
Concanacalin A, Lectin from Arachis hypogaea (peanut) Sigma-Aldrich L7381 ConA
Glucose Sigma-Aldrich G7528
Hepes Sigma-Aldrich H0887
Isothesia Henry Schein Animal Health 1169567761 Isoflurane
Magnesium sulfate Sigma-Aldrich M2643 MgSO4
N6,2'-O-Dibutyryladenosine 3',5'-cyclic monophosphate sodium salt Sigma-Aldrich D0627 db-cAMP
Potassium chloride Sigma-Aldrich P9333 KCl
Potassium dihydrogen phosphate Sigma-Aldrich P5655 KH2PO4
Rotenone Cayman Chemical Company 13995 Rot; prepare a 5 mM stock solution in DMSO (2mg/ml) and store in small aliquots
Sodium bicarbonate Sigma-Aldrich S5761 NaHCO3-
Sodium chloride Sigma-Aldrich S9888 NaCl
Equipment and materials
12 channel pipette 10-100 μL eppendorf ES-12-100
12 channel pipette 50-300 μL vwr 613-5257
37 °C, non-CO2 incubator vwr 1545
5 mL cetrifuge tubes eppendorf 30119380
50 mL conical centrifuge tubes vwr 76211-286
Centrifuge with plate adapter Thermo Scientific IEC FL40R
Dissection kit World Precision Instruments MOUSEKIT
Inverted phase contrast microscope with 40X objective Nikon
OctaPool Solution Reservoirs, 25 ml, divided Thomas Scientific 1159X93
OctaPool Solution Reservoirs, 25 mL, divided Thomas Scientific 1159X95
Seahorse XFe96 Analyzer Agilent
Seahorse XFe96 FluxPak Agilent 102416-100 Also sold as XFe96 FluxPak mini (102601-100) with 6 instead of 18 cartidges.

References

  1. Wu, M., et al. Multiparameter metabolic analysis reveals a close link between attenuated mitochondrial bioenergetic function and enhanced glycolysis dependency in human tumor cells. American Journal of Physiology – Cell Physiology. 292 (1), C125-C136 (2007).
  2. Amo, T., Yadava, N., Oh, R., Nicholls, D. G., Brand, M. D. Experimental assessment of bioenergetic differences caused by the common European mitochondrial DNA haplogroups H and T. Gene. 411 (1-2), 69-76 (2008).
  3. Choi, S. W., Gerencser, A. A., Nicholls, D. G. Bioenergetic analysis of isolated cerebrocortical nerve terminals on a microgram scale: spare respiratory capacity and stochastic mitochondrial failure. Journal of Neurochemistry. 109 (4), 1179-1191 (2009).
  4. de Groof, A. J., et al. Increased OXPHOS activity precedes rise in glycolytic rate in H-RasV12/E1A transformed fibroblasts that develop a Warburg phenotype. Molecular Cancer. 8, 54 (2009).
  5. Chao, L. C., et al. Insulin resistance and altered systemic glucose metabolism in mice lacking Nur77. Diabetes. 58 (12), 2788-2796 (2009).
  6. Chang, M. C. Fertilizing capacity of spermatozoa deposited into the fallopian tubes. Nature. 168 (4277), 697-698 (1951).
  7. Austin, C. R., Bishop, M. W. Role of the rodent acrosome and perforatorium in fertilization. Proceedings of the Royal Society of London. Series B, Biological Sciences. 149 (935), 241-248 (1958).
  8. Ishijima, S., Baba, S. A., Mohri, H., Suarez, S. S. Quantitative analysis of flagellar movement in hyperactivated and acrosome-reacted golden hamster spermatozoa. Molecular Reproduction and Development. 61 (3), 376-384 (2002).
  9. Suarez, S. S. Control of hyperactivation in sperm. Human Reproduction Update. 14 (6), 647-657 (2008).
  10. Goodson, S. G., Qiu, Y., Sutton, K. A., Xie, G., Jia, W., O’Brien, D. A. Metabolic substrates exhibit differential effects on functional parameters of mouse sperm capacitation. Biology of Reproduction. 87 (3), 75 (2012).
  11. Travis, A. J., et al. Functional relationships between capacitation-dependent cell signaling and compartmentalized metabolic pathways in murine spermatozoa. Journal of Biological Chemistry. 276 (10), 7630-7636 (2001).
  12. Urner, F., Leppens-Luisier, G., Sakkas, D. Protein tyrosine phosphorylation in sperm during gamete interaction in the mouse: the influence of glucose. Biology of Reproduction. 64 (5), 1350-1357 (2001).
  13. Danshina, P. V., et al. Phosphoglycerate kinase 2 (PGK2) is essential for sperm function and male fertility in mice. Biology of Reproduction. 82 (1), 136-145 (2010).
  14. Miki, K., et al. Glyceraldehyde 3-phosphate dehydrogenase-S, a sperm-specific glycolytic enzyme, is required for sperm motility and male fertility. Proceedings of the National Academy of Sciences. 101 (47), 16501-16506 (2004).
  15. Mori, C., et al. Mouse spermatogenic cell-specific type 1 hexokinase (mHk1-s) transcripts are expressed by alternative splicing from the mHk1 gene and the HK1-S protein is localized mainly in the sperm tail. Molecular Reproduction and Development. 49 (4), 374-385 (1998).
  16. Westhoff, D., Kamp, G. Glyceraldehyde 3-phosphate dehydrogenase is bound to the fibrous sheath of mammalian spermatozoa. Journal of Cell Science. 110 (15), 1821-1829 (1997).
  17. Nevo, A. C., Rikmenspoel, R. Diffusion of ATP in sperm flagella. Journal of Theoretical Biology. 26 (1), 11-18 (1970).
  18. Adam, D. E., Wei, J. Mass transport of ATP within the motile sperm. Journal of Theoretical Biology. 49 (1), 125-145 (1975).
  19. Tombes, R. M., Shapiro, B. M. Enzyme termini of a phosphocreatine shuttle. Purification and characterization of two creatine kinase isozymes from sea urchin sperm. Journal of Biological Chemistry. 262 (33), 16011-16019 (1987).
  20. Gomendio, M., Tourmente, M., Roldan, E. R. Why mammalian lineages respond differently to sexual selection: metabolic rate constrains the evolution of sperm size. Proceedings of the Royal Society of Biological Sciences. 278 (1721), 3135-3141 (2011).
  21. Tourmente, M., Villar-Moya, P., Rial, E., Roldan, E. R. Differences in ATP generation via glycolysis and oxidative phosphorylation and relationships with sperm motility in mouse species. Journal of Biological Chemistry. 290 (33), 20613-20626 (2015).
  22. Visconti, P. E., et al. Capacitation of mouse spermatozoa. II. Protein tyrosine phosphorylation and capacitation are regulated by a cAMP-dependent pathway. Development. 121 (4), 1139-1150 (1995).
  23. Buck, J., Sinclair, M. L., Schapal, L., Cann, M. J., Levin, L. R. Cytosolic adenylyl cyclase defines a unique signaling molecule in mammals. PNAS. 96 (1), 79-84 (1999).
  24. Visconti, P. E., Bailey, J. L., Moore, G. D., Pan, D., Olds-Clarke, P., Kopf, G. S. Capacitation of mouse spermatozoa. I. Correlation between the capacitation state and protein tyrosine phosphorylation. Development. 121 (4), 1129-1137 (1995).
  25. Morgan, D. J., et al. Tissue-specific PKA inhibition using a chemical genetic approach and its application to studies on sperm capacitation. PNAS. 105 (52), 20740-20745 (2008).
  26. Lybaert, P., Danguy, A., Leleux, F., Meuris, S., Lebrun, P. Improved methodology for the detection and quantification of the acrosome reaction in mouse spermatozoa. Histology and Histopathology. 24 (8), 999-1007 (2009).
check_url/60815?article_type=t

Play Video

Cite This Article
Balbach, M., Buck, J., Levin, L. R. Using an Extracellular Flux Analyzer to Measure Changes in Glycolysis and Oxidative Phosphorylation during Mouse Sperm Capacitation. J. Vis. Exp. (155), e60815, doi:10.3791/60815 (2020).

View Video