Summary

Derivation, Expansion, Cryopreservation and Characterization of Brain Microvascular Endothelial Cells from Human Induced Pluripotent Stem Cells

Published: November 19, 2020
doi:

Summary

This protocol details an adapted method to derive, expand, and cryopreserve brain microvascular endothelial cells obtained by differentiating human induced pluripotent stem cells, and to study blood brain barrier properties in an ex vivo model.

Abstract

Brain microvascular endothelial cells (BMECs) can be differentiated from human induced pluripotent stem cells (iPSCs) to develop ex vivo cellular models for studying blood-brain barrier (BBB) function. This modified protocol provides detailed steps to derive, expand, and cryopreserve BMECs from human iPSCs using a different donor and reagents than those reported in previous protocols. iPSCs are treated with essential 6 medium for 4 days, followed by 2 days of human endothelial serum-free culture medium supplemented with basic fibroblast growth factor, retinoic acid, and B27 supplement. At day 6, cells are sub-cultured onto a collagen/fibronectin matrix for 2 days. Immunocytochemistry is performed at day 8 for BMEC marker analysis using CLDN5, OCLN, TJP1, PECAM1, and SLC2A1. Western blotting is performed to confirm BMEC marker expression, and absence of SOX17, an endodermal marker. Angiogenic potential is demonstrated with a sprouting assay. Trans-endothelial electrical resistance (TEER) is measured using chopstick electrodes and voltohmmeter starting at day 7. Efflux transporter activity for ATP binding cassette subfamily B member 1 and ATP binding cassette subfamily C member 1 is measured using a multi-plate reader at day 8. Successful derivation of BMECs is confirmed by the presence of relevant cell markers, low levels of SOX17, angiogenic potential, transporter activity, and TEER values ~2000 Ω x cm2. BMECs are expanded until day 10 before passaging onto freshly coated collagen/fibronectin plates or cryopreserved. This protocol demonstrates that iPSC-derived BMECs can be expanded and passaged at least once. However, lower TEER values and poorer localization of BMEC markers was observed after cryopreservation. BMECs can be utilized in co-culture experiments with other cell types (neurons, glia, pericytes), in three-dimensional brain models (organ-chip and hydrogel), for vascularization of brain organoids, and for studying BBB dysfunction in neuropsychiatric disorders.

Introduction

Blood-Brain Barrier Function
The blood-brain barrier (BBB) forms a boundary that limits movement of substances from the blood to the brain. The BBB is comprised of brain microvascular endothelial cells (BMECs) that form a monolayer lining the vasculature. BMECs, together with astrocytes, neurons, pericytes, microglia, and extracellular matrix, form the neurovascular unit. BMECs have a tightly regulated paracellular structure that allows the BBB to maintain high trans-endothelial electrical resistance (TEER), which limits passive diffusion and serves as an indicator of barrier integrity1,2. BMECs also have proteins that assist with transcellular movement such as endocytosis, transcytosis, and transmigration, as well as extravasation of leukocytes during an immune response3. BMECs rely on influx and efflux transporters for nourishment and removal of waste products, in order to maintain a homeostatic balance in the brain3. For example, solute carrier family 2 member 1 (SLC2A1) is an influx transporter responsible for the movement of glucose across the BBB4, while efflux transporters such as the ATP binding cassette subfamily B member 1 (ABCB1) and the ATP binding cassette subfamily C member 1 (ABCC1) are responsible for returning substrates back into the blood stream3,5,6,7. ABCB1 substrates include morphine, verapamil4, and antipsychotics such as olanzapine and risperidone8, while the ABCC1 transporter has a variety of substrates including sulfate conjugates, vincristine, and glucuronide conjugates4.

Application of BBB Models in Psychiatric Disorders
BBB dysfunction has been implicated in a number of neurological and psychiatric disorders, including schizophrenia and bipolar disorder9,10. Recently, iPSC-derived ex vivo cellular models are being utilized to interrogate the cellular and molecular underpinnings of psychiatric disorders, but these models currently do not take into account the potential role played by the neurovasculature11,12,13. It is hypothesized that peripheral inflammatory cytokines circulating in the blood can adversely impact the BBB14,15,16,17, but there is also evidence for paracellular18,19,20,21,22, transcellular23,24,25,26,27,28,29, and extracellular matrix20,29,30,31,32 abnormalities contributing to BBB dysfunction. Disruption of the BBB can result in the contents of the blood entering the brain parenchyma and activating astrocytes and/or microglia to release proinflammatory cytokines, which in turn initiate an inflammatory response33 that can have detrimental effects on the brain34. BMECs are the primary component of the BBB and examining the structure and function of these cells can enhance the understanding of BBB dysfunction in neurological and psychiatric disorders.

Alternative BMEC Models
Prior to the development of efficient protocols for deriving BMECs from iPSCs1,6,35,36, researchers had employed immortalized BMECs37 to study BBB function. However, many of these models failed to attain desirable BBB phenotypes, such a physiological range of TEER values38,39. Utilizing iPSCs has the advantage of retaining the genetic background of the individual from which the cells are derived. Scientists are actively working on establishing iPSC-derived ex vivo microenvironment models that recapitulate the structure and function of the human brain. Researchers have developed methods to derive BMECs that are structurally and physiologically similar to BMECs found in vivo. Methods for obtaining purified populations of iPSC-derived BMECs require a number of different steps with protocols being optimized in the last few years1,6,35,36. Generally, iPSC-derived BMECs are cultured in Essential 6 (E6) medium for 4 days, followed by 2 days in human endothelial serum-free medium (hESFM) supplemented with basic fibroblast growth factor (bFGF), retinoic acid (RA), and B27 supplement. The cells are then cultured on a collagen IV (COL4) and fibronectin (FN) matrix to obtain >90% homogeneous BMECs1.

The identity of BMECs are confirmed by immunofluorescence showing the co-expression of BMEC proteins including platelet-endothelial cell adhesion molecule-1 (PECAM1), SLC2A1, and tight junction proteins such as tight junction protein 1 (TJP1), occludin (OCLN), and claudin-5 (CLDN5)6. Sprouting assays have been used to confirm the angiogenic potential of iPSC-derived BMECs.6 The BBB integrity of BMECs is evaluated by the presence of physiologic in vitro TEER values (~2000Ω x cm2)37 and measurable activity for efflux transporters such as ABCB1 and ABCC11,6,36. Recent methodological advances by the Lippmann group have led to iPSC-derived BMEC protocols with reduced experimental variability and enhanced reproducibility1. However, it is not known whether they can be expanded and passaged beyond the sub-culturing stage. Our modified protocol aims to address this issue by passaging iPSC-derived BMECs beyond day 8 and assessing whether they can be further expanded to retain BBB properties after cryopreservation. While no studies have described passaging of iPSC-derived BMECs, a protocol exists for BMEC cryopreservation that retains physiologic BBB properties after undergoing a freeze-thaw cycle40. However, it is not known post-cryopreservation BMECs can be passaged and retain BBB properties.

BMECs derived from iPSCs using the Lippmann protocol have been utilized to model BBB disruption in neurological disorders such as Huntington’s disease7. Such iPSC-derived BMECs have also been used to investigate the effects of bacterial infection such as Neisseria meningitidis or Group B Streptococcus on disruption of blood-CSF barrier and BBB respectively41,42. Also, using iPSC-derived BMECs from 22q deletion syndrome patients with schizophrenia, researchers observed an increase in intercellular adhesion molecule-1 (ICAM-1), a major adhesion molecule in BMECs that assist with recruitment and extravasation of leukocytes into the brain43. Taken together, these studies demonstrate the utility of iPSC-derived BMECs for studying BBB disruption in complex neuropsychiatric disorders.

Protocol

Human iPSCs were reprogrammed from the fibroblasts of healthy donors using a protocol approved by the Institutional Review Boards of Massachusetts General Hospital and McLean Hospital, and characterized as described in previous studies44,45,46. NOTE: Briefly, fibroblasts were reprogrammed to iPSC via mRNA-based genetic reprogramming47. The iPSCs were maintained in stem cell med…

Representative Results

BMEC Differentiation A few critical steps in this protocol should be followed precisely (Figure 1). E6 medium use on day 1 is important, since it is often used for deriving neuroectoderm lineage from iPSCs within a relatively short period of time yielding reproducible results across multiple cell lines36. Another important step is on day 4 of differentiation, where E6 medium should be switched to hESFM with diluted (1:200) B27, 20 ng/m…

Discussion

Modifications and Troubleshooting

In this protocol, we made some modifications in using a commonly used extracellular matrix and cell culture media during iPSC culturing for derivation of BMECs (Figure 1). These changes did not impact the ability to derive BMECS from human iPSCs as described in the Lippmann protocol1. An iPSC line from a different healthy donor was used to demonstrate that this modified protocol shows resul…

Disclosures

The authors have nothing to disclose.

Acknowledgements

This work was supported by a National Institute of Mental Health Biobehavioral Research Awards for Innovative New Scientists (BRAINS) Award R01MH113858 (to R.K.), a National Institutes of Health Award KL2 TR002542 (PL). a National Institute of Mental Health Clinical Scientist Development Award K08MH086846 (to R.K.), a Sydney R Baer Jr Foundation Grant (to P.L.) the Doris Duke Charitable Foundation Clinical Scientist Development Award (to R.K.), the Ryan Licht Sang Bipolar Foundation (to R.K.), the Phyllis & Jerome Lyle Rappaport Foundation (to R.K.), the Harvard Stem Cell Institute (to R.K.) and by Steve Willis and Elissa Freud (to R.K.). We thank Dr. Annie Kathuria for her critical reading and feedback on the manuscript.

Materials

2′,7′-dichlorodihydrofluorescein diacetate Sigma Aldrich D6883-50MG
Accutase Sigma Aldrich A6964-100mL
Alexa Fluor 488 Donkey anti-Mouse IgG Life Technologies A-21202
Alexa Fluor 555 Donkey anti-Rabbit IgG Life Technologies A-31572
B27 Supplement Thermo Fisher Scientific 17504044
CD31 (PECAM-1) (89C2) Mouse mAb Cell Signaling 3528S
CLDN5 (Claudin-5) Thermo Fisher Scientific 35-2500
Collagen IV from human placenta Sigma Aldrich C5533-5mg
Corning 2 mL Internal Threaded Polypropylene Cryogenic Vial  Corning  8670
Corning Costar Flat Bottom Cell Culture Plates (6-wells) Corning 353046
Corning Falcon Flat Bottom Cell Culture Plates (24-wells) Corning 353047
Corning Transwell Multiple Well Plate with Permeable Polyester Membrane Inserts (12-wells) Corning 3460
Countess slides Thermo Fisher Scientific C10228
DMEM/F12 (without phenol red) Thermo Fisher Scientific  A1413202
DMSO Sigma Aldrich D2438-50mL
Donkey serum Sigma Aldrich D9663-10ML
DPBS (+/+) Gibco/Thermo Fisher Scientific 14040-117
Epithelial Volt/Ohm (TEER) Meter (EVOM2) STX2 World Precision Instruments N/A
Essential 6 Medium (Thermo Fisher) Thermo Fisher Scientific A1516401
Fetal Bovine Serum (FBS) Sigma Aldrich F2442
Fibronectin Sigma Aldrich F2006-2mg
Geltrex LDEV-Free Reduced Growth Factor Basement Membrane Matrix Thermo Fisher Scientific A1413202
Hanks' Balance Salt Solution with calcium and magnesium  Thermo Fisher Scientific 24020-117
Hoechst 33342, Trihydrochloride, Trihydrate Thermo Fisher Scientific H3570
Human endothelial serum-free medium Thermo Fisher Scientific 11111044
InCell Analyzer 6000 General Electric N/A
Invitrogen Countess Automated Cell Counter Thermo Fisher Scientific N/A
MK-571 Sigma Aldrich M7571-5MG
NutriStem Stemgent 01-0005
Occludin Thermo Fisher Scientific 33-1500
Paraformaldehyde 16% Electron Microscopy Services 15710
Perkin Elmer Envision 2103 multi-plate Reader Perkin Elmer N/A
Recombinant Human VEGF 165 Peprotech 100-20
Recombinant Human FGF-basic (154 a.a.) Peprotech 100-18B
Retinoic acid Sigma Aldrich R2625-100MG
Rhodamine 123 Sigma Aldrich 83702-10MG
SLC2A1 (GLUT-1) ThermoFisher PA1-21041
SOX17 Cell Signaling 81778S
TJP-1 (ZO-1) ThermoFisher PA5-28869
Triton X-100 Sigma Aldrich T8787-50ML
Trypan Blue Stain (0.4%) for use with the Countess Automated Cell Counter Thermo Fisher Scientific T10282
Valspodar (Sigma) (cyclosporin A) Sigma Aldrich SML0572-5MG
Versene solution Thermo Fisher Scientific 15040066
Y-27632 dihydrochloride (ROCK inhibitor) Tocris/Thermo Fisher Scientific 1254

References

  1. Neal, E. H., et al. A Simplified, Fully Defined Differentiation Scheme for Producing Blood-Brain Barrier Endothelial Cells from Human iPSCs. Stem Cell Reportsorts. 12, 1380-1388 (2019).
  2. Smith, Q. R., Rapoport, S. I. Cerebrovascular Permeability Coefficients to Sodium, Potassium, and Chloride. Journal of Neurochemistry. 46, 1732-1742 (2006).
  3. Liebner, S., et al. Functional morphology of the blood-brain barrier in health and disease. Acta Neuropathologica. 135, 311-336 (2018).
  4. Sanchez-Covarrubias, L., Slosky, L., Thompson, B., Davis, T., Ronaldson, P. Transporters at CNS Barrier Sites: Obstacles or Opportunities for Drug Delivery. Current Pharmaceutical Design. 20, 1422-1449 (2014).
  5. Stamatovic, S., Keep, R., Andjelkovic, A. Brain Endothelial Cell-Cell Junctions: How to “Open” the Blood Brain Barrier. Current Neuropharmacology. 6, 179-192 (2008).
  6. Lippmann, E. S., et al. Derivation of blood-brain barrier endothelial cells from human pluripotent stem cells. Nature Biotechnology. 30, 783-791 (2012).
  7. Lim, R. G., et al. Huntington’s Disease iPSC-Derived Brain Microvascular Endothelial Cells Reveal WNT-Mediated Angiogenic and Blood-Brain Barrier Deficits. Cell Reports. 19, 1365-1377 (2017).
  8. Eum, S., Lee, A. M., Bishop, J. R. Pharmacogenetic tests for antipsychotic medications: clinical implications and considerations. Dialogues in Clinical Neuroscience. 18, 323-337 (2016).
  9. Najjar, S., et al. Neurovascular Unit Dysfunction and Blood–Brain Barrier Hyperpermeability Contribute to Schizophrenia Neurobiology: A Theoretical Integration of Clinical and Experimental Evidence. Frontiers in Psychiatry. 8, 83 (2017).
  10. Pollak, T. A., et al. The blood-brain barrier in psychosis. Lancet Psychiatry. 5, 79-92 (2018).
  11. Watmuff, B., et al. Disease signatures for schizophrenia and bipolar disorder using patient-derived induced pluripotent stem cells. Molecular and Cellular Neuroscience. 73, 96-103 (2016).
  12. Watmuff, B., Liu, B., Karmacharya, R. Stem cell-derived neurons in the development of targeted treatment for schizophrenia and bipolar disorder. Pharmacogenomics. 18, 471-479 (2017).
  13. Karmacharya, R., Haggarty, S. J. Stem cell models of neuropsychiatric disorders. Molecular and Cellular Neuroscience. 73, 1-2 (2016).
  14. Hwang, Y., et al. Gene expression profiling by mRNA sequencing reveals increased expression of immune/inflammation-related genes in the hippocampus of individuals with schizophrenia. Translational Psychiatry. 3, 321 (2013).
  15. Kim, S. Transcriptome sequencing of the choroid plexus in schizophrenia. Translational Psychiatry. 11, (2016).
  16. Lizano, P., et al. Association of Choroid Plexus Enlargement With Cognitive, Inflammatory, and Structural Phenotypes Across the Psychosis Spectrum. American Journal of Psychiatry. 176, 564-572 (2019).
  17. Harris, L. W., et al. The Cerebral Microvasculature in Schizophrenia: A Laser Capture Microdissection Study. PLoS ONE. 3, 3964 (2008).
  18. Greene, C., Hanley, N., Campbell, M. Claudin-5: gatekeeper of neurological function. Fluids and Barriers of the CNS. 16, 3 (2019).
  19. Maes, M., Sirivichayakul, S., Kanchanatawan, B., Vodjani, A. Breakdown of the Paracellular Tight and Adherens Junctions in the Gut and Blood Brain Barrier and Damage to the Vascular Barrier in Patients with Deficit Schizophrenia. Neurotoxicity Research. 36, 306-322 (2019).
  20. Katsel, P., Roussos, P., Pletnikov, M., Haroutunian, V. Microvascular anomaly conditions in psychiatric disease. Schizophrenia – connection. Neuroscience & Biobehavioral Reviews. 77, 327-339 (2017).
  21. Pouget, J. G., et al. Genome-Wide Association Studies Suggest Limited Immune Gene Enrichment in Schizophrenia Compared to 5 Autoimmune Diseases. Schizophrenia Bulletin. 42, 1176-1184 (2016).
  22. Luo, X., et al. Systematic Prioritization and Integrative Analysis of Copy Number Variations in Schizophrenia Reveal Key Schizophrenia Susceptibility Genes. Schizophrenia Bulletin. , 15 (2014).
  23. Cai, H. Q., et al. Increased macrophages and changed brain endothelial cell gene expression in the frontal cortex of people with schizophrenia displaying inflammation. Molecular Psychiatry. , (2018).
  24. Katsel, P., Davis, K. L., Gorman, J. M., Haroutunian, V. Variations in differential gene expression patterns across multiple brain regions in schizophrenia. Schizophrenia Research. 77, 241-252 (2005).
  25. de Klerk, O. L., et al. Regional increase in P-glycoprotein function in the blood-brain barrier of patients with chronic schizophrenia. Psychiatry Research: Neuroimaging. 183, 151-156 (2010).
  26. Hoosain, F. G., et al. Bypassing P-Glycoprotein Drug Efflux Mechanisms: Possible Applications in Pharmacoresistant Schizophrenia Therapy. BioMed Research International. 2015, 1-21 (2015).
  27. Kimchi-Sarfaty, C., et al. A “Silent” Polymorphism in the MDR1 Gene Changes Substrate Specificity. Science. 315, 525-528 (2007).
  28. Martínez-Magaña, J. J., et al. Exploratory Analysis of Rare and Novel Variants in Mexican Patients Diagnosed with Schizophrenia and Dementia. Revista de Investigación Clínica. 71, 1879 (2019).
  29. Girard, S. L., et al. Increased exonic de novo mutation rate in individuals with schizophrenia. Nature Genetics. 43, 860-863 (2011).
  30. Xu, B., et al. De novo gene mutations highlight patterns of genetic and neural complexity in schizophrenia. Nature Genetics. 44, 1365-1369 (2012).
  31. Kurian, S. M. Identification of blood biomarkers for psychosis using convergent functional genomics. Molecular Psychiatry. 22, (2011).
  32. Prata, D. P., Costa-Neves, B., Cosme, G., Vassos, E. Unravelling the genetic basis of schizophrenia and bipolar disorder with GWAS: A systematic review. Journal of Psychiatric Research. 114, 178-207 (2019).
  33. Trépanier, M. O., Hopperton, K. E., Mizrahi, R., Mechawar, N., Bazinet, R. P. Postmortem evidence of cerebral inflammation in schizophrenia: a systematic review. Molecular Psychiatry. 21, 1009-1026 (2016).
  34. Busse, S., et al. Different distribution patterns of lymphocytes and microglia in the hippocampus of patients with residual versus paranoid schizophrenia: Further evidence for disease course-related immune alterations. Brain, Behavior, and Immunity. 26, 1273-1279 (2012).
  35. Lippmann, E. S., Al-Ahmad, A., Azarin, S. M., Palecek, S. P., Shusta, E. V. A retinoic acid-enhanced, multicellular human blood-brain barrier model derived from stem cell sources. Scientific Reports. 4, 4160 (2015).
  36. Hollmann, E. K., et al. Accelerated differentiation of human induced pluripotent stem cells to blood-brain barrier endothelial cells. Fluids and Barriers of the CNS. 14, 9 (2017).
  37. Srinivasan, B., Kolli, A. R., Barichello, T. Transepithelial/Transendothelial Electrical Resistance (TEER) to Measure the Integrity of Blood-Brain Barrier. Blood-Brain Barrier. 142, 99-114 (2019).
  38. Weksler, B. B., et al. Blood-brain barrier-specific properties of a human adult brain endothelial cell line. FASEB J. 19, 1872-1874 (2005).
  39. Eigenmann, D. E., et al. Comparative study of four immortalized human brain capillary endothelial cell lines, hCMEC/D3, hBMEC, TY10, and BB19, and optimization of culture conditions, for an in vitro blood-brain barrier model for drug permeability studies. Fluids and Barriers of the CNS. 10, 33 (2013).
  40. Wilson, H. K., Faubion, M. G., Hjortness, M. K., Palecek, S. P., Shusta, E. V. Cryopreservation of Brain Endothelial Cells Derived from Human Induced Pluripotent Stem Cells Is Enhanced by Rho-Associated Coiled Coil-Containing Kinase Inhibition. Tissue Engineering Part C: Methods. 22, 1085-1094 (2016).
  41. Martins Gomes, S. F., et al. Induced Pluripotent Stem Cell-Derived Brain Endothelial Cells as a Cellular Model to Study Neisseria meningitidis Infection. Frontiers in Microbiology. 10, 1181 (2019).
  42. Kim, B. J., et al. Modeling Group B Streptococcus and Blood-Brain Barrier Interaction by Using Induced Pluripotent Stem Cell-Derived Brain Endothelial Cells. mSphere. 2, 00398 (2017).
  43. Crockett, A. M., et al. Disruption of the Blood-Brain Barrier in 22q11.2 Deletion Syndrome. biorXiv. , (2019).
  44. Kathuria, A., et al. Synaptic deficits in iPSC-derived cortical interneurons in schizophrenia are mediated by NLGN2 and rescued by N-acetylcysteine. Translational Psychiatry. 9, 321 (2019).
  45. Kathuria, A., et al. Transcriptomic Landscape and Functional Characterization of Induced Pluripotent Stem Cell-Derived Cerebral Organoids in Schizophrenia. JAMA Psychiatry. , (2020).
  46. Kathuria, A., et al. Transcriptome analysis and functional characterization of cerebral organoids in bipolar disorder. Genome Medicine. 12, 34 (2020).
  47. Warren, L., Lin, C. mRNA-Based Genetic Reprogramming. Molecular Therapy. 27, 729-734 (2019).
  48. Eaton, S. L., et al. A Guide to Modern Quantitative Fluorescent Western Blotting with Troubleshooting Strategies. Journal of Visualized Experiments. , 52099 (2014).
  49. Wang, P., Rodriguez, R. T., Wang, J., Ghodasara, A., Kim, S. K. Targeting SOX17 in Human Embryonic Stem Cells Creates Unique Strategies for Isolating and Analyzing Developing Endoderm. Cell Stem Cell. 8, 335-346 (2011).
  50. Blume, L. F., Denker, M., Kunze, T., et al. Temperature corrected transepithelial electrical resistance (TEER) measurement to quantify rapid changes in paracellular permeability. Pharmazie. , 19-24 (2010).
  51. Chen, K. G., Mallon, B. S., McKay, R. D. G., Robey, P. G. Human Pluripotent Stem Cell Culture: Considerations for Maintenance, Expansion, and Therapeutics. Cell Stem Cell. 14, 13-26 (2014).
  52. Pham, M. T., et al. Generation of human vascularized brain organoids. NeuroReport. 29, 588-593 (2018).
  53. Mansour, A. A., et al. An in vivo model of functional and vascularized human brain organoids. Nature Biotechnology. 36, 432-441 (2018).
  54. Baruah, J., Vasudevan, A. The Vessels Shaping Mental Health or Illness. Open Neuroimaging Journal. 13, 1-9 (2019).
  55. Lopes, R., Soares, R., Coelho, R., Figueiredo-Braga, M. Angiogenesis in the pathophysiology of schizophrenia – comprehensive review and a conceptual hypothesis. Life Sciences. 128, 79-93 (2015).
  56. Wilson, H. K., Canfield, S. G., Hjortness, M. K., Palecek, S. P., Shusta, E. V. Exploring the effects of cell seeding density on the differentiation of human pluripotent stem cells to brain microvascular endothelial cells. Fluids and Barriers of the CNS. 12, 13 (2015).
check_url/61629?article_type=t

Play Video

Cite This Article
Pong, S., Lizano, P., Karmacharya, R. Derivation, Expansion, Cryopreservation and Characterization of Brain Microvascular Endothelial Cells from Human Induced Pluripotent Stem Cells. J. Vis. Exp. (165), e61629, doi:10.3791/61629 (2020).

View Video