Summary

萌芽酵母酿酒酵母中软骨蛋白定位评估

Published: July 19, 2021
doi:

Summary

尽管最近取得了进展,但许多酵母线粒体蛋白仍然具有完全未知的功能。该协议提供了一种简单可靠的方法来确定蛋白质的膜软骨定位,这对于阐明其分子功能至关重要。

Abstract

尽管最近在酵母线粒体蛋白质组的表征方面取得了进展,但大量蛋白质的膜软骨定位仍然难以捉摸。在这里,我们描述了一种确定酵母线粒体蛋白亚有机体定位的稳健而有效的方法,这被认为是线粒体蛋白功能阐明过程中的基本步骤。该方法涉及一个初始步骤,包括获得高纯度的完整线粒体。然后将这些线粒体制剂进行亚分割方案,包括低渗休克(肿胀)和与蛋白酶K(蛋白酶)孵育。在肿胀期间,外线粒体膜被选择性地破坏,允许蛋白酶K消化膜间空间室的蛋白质。同时,为了获得有关膜蛋白拓扑的信息,首先对线粒体制剂进行超声处理,然后用碳酸钠进行碱性提取。最后,离心后,通过SDS-PAGE和蛋白质印迹分析来自这些不同处理的沉淀和上清液组分。通过将目标蛋白质的蛋白质印迹图谱与已知标准进行比较,可以获得邻位点定位以及膜拓扑结构。

Introduction

线粒体是真核细胞的基本细胞器,在生物能量学、细胞代谢和信号通路中起着至关重要的作用1。为了正确执行这些任务,线粒体依赖于一组独特的蛋白质和脂质,负责其结构和功能。萌芽 酵母酿酒酵母 已被广泛用作研究线粒体过程以及其他细胞器的模型系统2。线粒体基因组仅编码酵母中的八种蛋白质;绝大多数线粒体蛋白(~99%)由核基因编码,核基因在胞质核糖体上翻译,随后通过复杂的蛋白质导入机器导入到其正确的提交粒体区室345。因此,线粒体生物发生取决于核基因组和线粒体基因组的协调表达67。导致线粒体生物发生缺陷的基因突变与人类疾病有关8910

在过去的二十年中,针对高度纯化的线粒体的高通量蛋白质组学研究导致了酵母线粒体蛋白质组的全面表征,据估计酵母线粒体蛋白质组由至少900种蛋白质组成11121314。尽管这些研究提供了有价值的信息,但仍然需要四个线粒体亚室(即外膜(OM),膜间空间(IMS),内膜(IMS)和基质)中每种蛋白质的亚组织体定位。通过对两个较小的线粒体亚室(OM和IMS)进行蛋白质组学范围的研究,部分解决了这个问题1516。最近,Vögtle和合作者通过生成酵母中递交软骨蛋白分布的高质量全球地图向前迈出了一大步。使用结合基于SILAC的定量质谱,不同的提交粒体分馏方案以及来自OM和IMS蛋白质组的数据集的综合方法,作者将818种蛋白质分配到四个线粒体亚室13

尽管这些高通量蛋白质组学研究取得了进展,但我们对提交软骨蛋白质组组成的了解远未完成。事实上,在Vögtle及其合作者报告的986种定位于酵母线粒体中的蛋白质中,有168种不能被分配到四个提交粒体区室中的任何一个13。此外,作者没有提供有关预测外周附着于线粒体膜外围的蛋白质膜拓扑的信息。例如,不可能知道被指定为外周附着在内膜上的蛋白质是否面向基质或膜间空间。除了蛋白质组范围研究中这些缺失的数据外,关于大量线粒体蛋白的亚有机体定位,还有相互矛盾的信息。一个例子是蛋白酶Prd1,它在Saccharomyces基因组数据库(SGD)和Uniprot等通用数据库中被分配为膜间空间蛋白。令人惊讶的是,使用类似于这里描述的亚分案方案,Vögtle和合作者清楚地表明Prd1是一种真正的基质蛋白13。如上所述,需要阐明或重新评估许多线粒体蛋白的膜软骨定位。在这里,我们提供了一个简单可靠的方案来确定酵母线粒体蛋白的亚有机体定位。该协议由各种研究小组开发和优化,并已常规用于确定提交粒体定位以及许多线粒体蛋白的膜拓扑。

Protocol

1. 酵母细胞的生长 通过将一小部分细胞从-80°C甘油储备到YPD(1%酵母提取物,2%蛋白胨,2%葡萄糖)琼脂平板上来分离目标菌株的单个菌落。将板在30°C孵育2-3天。注意:本方案中使用的酿酒酵母菌株来自BY4741(MATα;his3Δ1;leu2Δ0;met15Δ0;ura3δ0)。除营养标记基因外,该菌株不含任何缺失基因,也不携带任何质粒。因此,它…

Representative Results

屈服粒体分馏方案的成功取决于获得高度纯化的完整线粒体。为此,在酵母细胞裂解过程中,细胞器的完整性必须几乎完全保持。这是通过使用细胞裂解方案实现的,该方案结合了细胞壁的酶促消化,然后使用Dounce均质机对质膜进行物理破坏。然后通过分类离心收集线粒体内容物。这种亚细胞分馏产生富集的线粒体部分,正如高水平的porin(Por1)的存在所证实的那样,这是一种线粒体标志物蛋白?…

Discussion

这里介绍的方案已被成功使用并连续优化了很长时间,以确定提交软骨区室中的蛋白质定位13,1418212223该协议的可靠性和可重复性在很大程度上取决于线粒体制剂的纯度和完整性18。这两个要求都是通过在粗线粒体制剂?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

我们感谢A. Tzagoloff博士(哥伦比亚大学)提供针对提交粒体标记蛋白Cyt的抗体。 b2、αKGD 和 Sco1。我们还感谢马里奥·恩里克·德巴罗斯博士(圣保罗大学)在制定本议定书期间所作的有益讨论和评论。

这项工作得到了圣保罗国家保护基金会(FAPESP)的研究资助(2013/07937-8)。

Fernando Gomes和Helena Turano也得到了FAPESP的支持,分别为2017/09443-3和2017/23839-7。Angélica Ramos也得到了Coordenação de Aperfeiçoamento de Pessoal de Nível Superior(CAPES)的支持。

Materials

Bacto Peptone BD 211677
Bacto Yeast extract BD 212750
Beckman Ultra-Clear Centrifuge Tubes, 14 x 89 mm Beckman Coulter 344059
Bovine serum albumin (BSA fatty acid free) Sigma-Aldrich A7030 Component of Homogenization buffer
DL-Dithiothreitol Sigma-Aldrich 43815 Component of DDT buffer
D-Sorbitol Sigma-Aldrich S1876
Ethylenediaminetetraacetic acid (EDTA) Sigma-Aldrich E9884
Galactose Sigma-Aldrich G0625
Glucose Sigma-Aldrich G7021
MOPS Sigma-Aldrich M1254
Phenylmethylsulfonyl fluoride (PMSF) Sigma-Aldrich P7626 Used to inactivate proteinase K
Potassium phosphate dibasic Sigma-Aldrich P3786
Potassium phosphate monobasic Sigma-Aldrich P0662
Proteinase K Sigma-Aldrich
Sucrose Sigma-Aldrich S8501
Trichloroacetic acid (TCA) Sigma-Aldrich T6399
Trizma Base Sigma-Aldrich T1503
Zymolyase-20T from Arthrobacter luteus MP Biomedicals, Irvine, CA 320921 Used to lyse living yeast cell walls to produce spheroplast

References

  1. Pfanner, N., Warscheid, B., Wiedemann, N. Mitochondrial proteins: from biogenesis to functional networks. Nature Reviews Molecular Cell Biology. 20 (5), 267-284 (2019).
  2. Malina, C., Larsson, C., Nielsen, J. Yeast mitochondria: An overview of mitochondrial biology and the potential of mitochondrial systems biology. FEMS Yeast Research. 18 (5), 1-17 (2018).
  3. Wiedemann, N., Pfanner, N. Mitochondrial machineries for protein import and assembly. Annual Review of Biochemistry. 86, 685-714 (2017).
  4. Chacinska, A., Koehler, C. M., Milenkovic, D., Lithgow, T., Pfanner, N. Importing mitochondrial proteins: machineries and mechanisms. Cell. 138 (4), 628-644 (2009).
  5. Schmidt, O., Pfanner, N., Meisinger, C. Mitochondrial protein import: from proteomics to functional mechanisms. Nature Reviews. Molecular Cell Biology. 11 (9), 655-667 (2010).
  6. Couvillion, M. T., Soto, I. C., Shipkovenska, G., Churchman, L. S. Synchronized mitochondrial and cytosolic translation programs. Nature. 533 (7604), 499-503 (2016).
  7. Richter-Dennerlein, R., et al. Mitochondrial protein synthesis adapts to influx of nuclear-encoded protein. Cell. 167 (2), 471-483 (2016).
  8. Suomalainen, A., Battersby, B. J. Mitochondrial diseases: The contribution of organelle stress responses to pathology. Nature Reviews Molecular Cell Biology. 19 (2), 77-92 (2018).
  9. Nicolas, E., Tricarico, R., Savage, M., Golemis, E. A., Hall, M. J. Disease-associated genetic variation in human mitochondrial protein import. American Journal of Human Genetics. 104 (5), 784-801 (2019).
  10. Calvo, S. E., Mootha, V. K. The mitochondrial proteome and human disease. Annual Review of Genomics and Human Genetics. 11, 25-44 (2010).
  11. Reinders, J., Zahedi, R. P., Pfanner, N., Meisinger, C., Sickmann, A. Toward the complete yeast mitochondrial proteome: Multidimensional separation techniques for mitochondrial proteomics. Journal of Proteome Research. 5 (7), 1543-1554 (2006).
  12. Sickmann, A., et al. The proteome of Saccharomyces cerevisiae mitochondria. Proceedings of the National Academy of Sciences of the United States of America. 100 (23), 13207-13212 (2003).
  13. Vögtle, F. N., et al. Landscape of submitochondrial protein distribution. Nature Communications. 8 (1), 00359 (2017).
  14. Morgenstern, M., et al. Definition of a high-confidence mitochondrial proteome at quantitative scale. Cell Reports. 19 (13), 2836-2852 (2017).
  15. Zahedi, R. P., et al. Proteomic analysis of the yeast mitochondrial outer membrane reveals accumulation of a subclass of preproteins. Molecular Biology of the Cell. 17 (3), 1436-1450 (2006).
  16. Vögtle, F. -. N., et al. Intermembrane space proteome of yeast mitochondria. Molecular & Cellular Proteomics. 11 (12), 1840-1852 (2012).
  17. Gregg, C., Kyryakov, P., Titorenko, V. I. Purification of mitochondria from yeast cells. Journal of Visualized Experiments: JoVE. (30), e1417 (2009).
  18. Boldogh, I. R., Pon, L. A. Purification and subfractionation of mitochondria from the yeast Saccharomyces cerevisiae. Methods in Cell Biology. 80 (06), 45-64 (2007).
  19. Gomes, F., et al. Proteolytic cleavage by the inner membrane peptidase (IMP) complex or Oct1 peptidase controls the localization of the yeast peroxiredoxin Prx1 to distinct mitochondrial compartments. Journal of Biological Chemistry. 292 (41), 17011-17024 (2017).
  20. Fujiki, Y., Hubbard, L., Fowler, S., Lazarow, P. B. Isolation of intracellular membranes by means of sodium carbonate treatment: Application to endoplasmic reticulum. Journal of Cell Biology. 93 (1), 97-102 (1982).
  21. Glick, B. S., et al. Cytochromes c1 and b2 are sorted to the intermembrane space of yeast mitochondria by a stop-transfer mechanism. Cell. 69 (5), 809-822 (1992).
  22. Diekert, K., de Kroon, A. I., Kispal, G., Lill, R. Isolation and subfractionation of mitochondria from the yeast Saccharomyces cerevisiae. Methods in Cell Biology. 65, 37-51 (2001).
  23. Glick, B. S. Pathways and energetics of mitochondrial protein import in Saccharomyces cerevisiae. Methods in Enzymology. 260 (1992), 224-231 (1995).
  24. Meisinger, C., Sommer, T., Pfanner, N. Purification of Saccharomcyes cerevisiae mitochondria devoid of microsomal and cytosolic contaminations. Analytical Biochemistry. 287 (2), 339-342 (2000).
  25. Meisinger, C., Pfanner, N., Truscott, K. N. Isolation of yeast mitochondria. Methods in molecular biology. 313 (1), 33-39 (2006).
  26. Kang, Y., et al. Tim29 is a novel subunit of the human TIM22 translocase and is involved in complex assembly and stability. eLife. 5, 17463 (2016).
  27. Wrobel, L., Sokol, A. M., Chojnacka, M., Chacinska, A. The presence of disulfide bonds reveals an evolutionarily conserved mechanism involved in mitochondrial protein translocase assembly. Scientific Reports. 6, 27484 (2016).
  28. Callegari, S., et al. TIM29 is a subunit of the human carrier translocase required for protein transport. FEBS letters. 590 (23), 4147-4158 (2016).
  29. Neupert, W., Herrmann, J. M. Translocation of proteins into mitochondria. Annual Review of Biochemistry. 76, 723-749 (2007).
  30. Meineke, B., et al. The outer membrane form of the mitochondrial protein Mcr1 follows a TOM-independent membrane insertion pathway. FEBS Letters. 582 (6), 855-860 (2008).

Play Video

Cite This Article
Gomes, F., Turano, H., Ramos, A., Netto, L. E. S. Assessment of Submitochondrial Protein Localization in Budding Yeast Saccharomyces cerevisiae. J. Vis. Exp. (173), e62853, doi:10.3791/62853 (2021).

View Video