Summary

Производство суспензионных культур и очистка аденоассоциированного вируса с помощью градиентного центрифугирования с градиентом плотности йодиксанола для применения in vivo

Published: February 09, 2024
doi:

Summary

Аденоассоциированный вирус получают в культуре суспензионных клеток и очищают центрифугированием с двойным градиентом плотности йодиксанола. Включены шаги по увеличению общего выхода вируса, снижению риска выпадения вируса в осадок и дальнейшей концентрации конечного вирусного продукта. Ожидаемые конечные титры достигают10-12 вирусных частиц/мл и пригодны для доклинического применения in vivo .

Abstract

Этот протокол описывает получение и очистку рекомбинантного аденоассоциированного вируса (rAAV) с помощью центрифугирования с градиентом плотности йодиксанола, серотип-независимого метода очистки AAV, впервые описанного в 1999 году. Векторы rAAV широко используются в генной терапии для доставки трансгенов к различным типам клеток человека. В данной работе рекомбинантный вирус получают путем трансфекции клеток Expi293 в суспензионной культуре с плазмидами, кодирующими трансген, векторный капсид и аденовирусные гены-хелперы. Центрифугирование с градиентом плотности йодиксанола очищает полные частицы AAV на основе плотности частиц. Кроме того, в эту повсеместную методологию включены три этапа для увеличения общего выхода вируса, снижения риска выпадения осадков из-за загрязнения белков и дальнейшей концентрации конечного вирусного продукта, соответственно: осаждение вирусных частиц из клеточных сред с использованием раствора полиэтиленгликоля (ПЭГ) и хлорида натрия, введение второго раунда центрифугирования с градиентом плотности йодиксанола, и замена буфера через центробежный фильтр. Используя этот метод, можно стабильно достигать титров в диапазоне10-12 вирусных частиц/мл исключительной чистоты для использования in vivo .

Introduction

Рекомбинантные аденоассоциированные вирусные векторы (rAAV) являются широко используемыми инструментами для лечения генетических заболеваний, включая спинальную мышечную атрофию, дистрофию сетчатки и гемофилию А 1,2,3. Векторы rAAV спроектированы таким образом, чтобы не иметь вирусных генов, присутствующих в AAV4 дикого типа, небольшом икосаэдрическом вирусе без оболочки с линейным одноцепочечным геномом ДНК размером 4,7 kb. AAV был впервые обнаружен в 1960-х годах в качестве контаминанта аденовирусных препаратов5. Несмотря на небольшой размер капсида, который ограничивает размер трансгена, который может быть упакован максимум до 4,9 кб, исключая РМЭ6, AAV полезен для доставки трансгенов, поскольку он непатогенен для человека, позволяет экспрессировать трансген во многих делящихся и неделящихся типах клеток и имеет ограниченные иммуногенные эффекты7.

Как представители рода dependoparvovirus, продукция rAAV зависит от экспрессии генов-хелперов, присутствующих в аденовирусе или вирусе простого герпеса8. Было разработано несколько стратегий производства rAAV, но продукция в клетках HEK293, трансформированная с помощью аденовирусных генов-хелперов E1A/E1B, является наиболее устоявшимся методом, используемымна сегодняшний день. Общий подход к получению rAAV начинается с трансфекции клеток HEK293 тремя плазмидами, содержащими трансген внутри инвертированных концевых повторов (ITR), генами AAV rep и cap , а также дополнительными аденовирусными генами-хелперами, соответственно. Через семьдесят два часа после трансфекции клетки собирают и обрабатывают для очистки rAAV, содержащего трансген.

При разработке новых векторов rAAV для терапевтических целей основной целью является получение векторов с повышенной эффективностью трансдукции. Повышение эффективности трансдукции клеток-мишеней означало бы снижение необходимой клинической дозы rAAV, тем самым снижая вероятность неблагоприятных иммуногенных эффектов в диапазоне от нейтрализации, опосредованной антителами, до острой токсичности10,11. Для повышения эффективности трансдукции векторов rAAV могут быть внесены изменения в упакованный геном или капсид. Жизнеспособные методы настройки эффективности трансдукции с помощью пакетного дизайна генома включают включение сильных и тканеспецифичных промоторов, тщательный отбор обрабатывающих элементов мРНК и оптимизацию кодирующих последовательностей для повышения эффективности трансляции12. Изменения капсида вносятся с целью увеличения тропизма для целевых типов клеток человека. Усилия по разработке новых капсидов вектора доставки трансгена rAAV, как правило, характеризуются сосредоточением внимания либо на рациональном дизайне капсидов AAV со специфическими мутациями, нацеленными на конкретные клеточные рецепторы, либо на направленной эволюции для идентификации капсидов с тропизмом для конкретных типов клеток из библиотек комбинаторных капсидов высокой сложности без нацеливания на один конкретный рецептор (хотя некоторые группы комбинируют эти подходы)13, 14,15. В подходе направленной эволюции комбинаторные библиотеки капсидов строятся с использованием определенного серотипического остова с мутировавшими вариабельными областями на внешней стороне капсида16. Комбинаторные библиотеки капсидов часто создаются из серотипов AAV, не происходящих от человека, что снижает риск ранее существовавшего иммунитета во время клинического использования10. Таким образом, методы очистки, которые могут быть применены к любому серотипу, идеально подходят для устранения необходимости в серотип-специфичной оптимизации для менее часто используемых серотипов, служащих основой для этих библиотек.

Центрифугирование с градиентом плотности йодиксанола используется для очистки высоких титров rAAV с высокой инфекционностью17. В этом протоколе rAAV производится в культуре суспензионных клеток, чтобы уменьшить количество труда, необходимого для получения больших титров AAV. Этап центрифугирования также включен для очистки клеточного лизата, чтобы уменьшить присутствие загрязняющих белков и снизить риск осаждения вируса. Данный протокол является экономически эффективным методом получения препаратов rAAV высокой чистоты, пригодных для доклинического применения.

Protocol

Состав растворов и буферов, используемых в данном протоколе, представлен в таблице 1. Решение Состав Буфер для лизиса AAV 1,2 мл 5 М раствора NaCl 2 мл 1 М…

Representative Results

Этот метод может быть использован для получения титров не менее10-12 вирусных частиц на мл. Титр может быть получен (Рисунок 3) методом кПЦР с использованием праймеров ITR, приведенных в Дополнительной таблице 1, методом ddPCR или любым другим методом титрования….

Discussion

Протокол очистки с двойным градиентом плотности йодиксанола является универсальным методом, поскольку он применим к любым мутантным вариантам AAV, независимо от их рецепторной специфичности. Ранние методы очистки AAV основывались на плотности частиц и включали изопикническое центрифу?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Никакой.

Materials

5810 R benchtop centrifuge Eppendorf 22625501
8-channel peristaltic pump  Watson-Marlow 020.3708.00A
Automated cell counter  NanoEntek EVE-MC
Avanti J-E high-speed centrifuge Beckman Coulter 369001
Benzonase Thermo Scientific 88701
Biological safety cabinet Labconco 322491101
CO2 incubator with shaker  Set at 8% CO2 and 37 °C
Conical centrifuge tubes Thermo Scientific 339652 50 mL
Conical centrifuge tubes Thermo Scientific 339650 15 mL
Disposable micro-pipets Fisherbrand 21-164-2G Capillaries
Dulbecco's phosphate buffered saline without CaCl2 and MgCl2  (DPBS) (10x) Sigma-Aldrich D1408
ECLIPSE Ts2R-FL inverted microscope Nikon
Expi293 Expression Medium Gibco A1435101
Expi293F cells Gibco A14527
Filter tips USA Scientific 1126-7810 1000 µL
Filter tips USA Scientific 1120-8810 200 µL
Filter tips USA Scientific 1120-1810 20 µL
Filter tips USA Scientific 1121-3810 10 µL
Hypodermic needles Tyco Healthcare 820112 20 GA x 1-1/2 A
Ice bucket with lid VWR 10146-184
JS-5.3 rotor Beckman Coulter 368690
Magnesium chloride solution (1 M) Millipore Sigma M1028-100ML
Metal stand and clamp  Fisherbrand 05-769-6Q
Microcentrifuge tubes Eppendorf 22600028 1.5 mL
Needle nose pliers
Optima XE-90 ultracentrifuge Beckman Coulter A94471
Opti-MEM I Reduced-Serum Medium Gibco 31985062
OptiPrep density gradient media (iodixanol) Serumwerk AXS-1114542 60% iodixanol solution
P1000 Pipet Gilson F144059M
P2 Pipet Gilson F144054M
P20 Pipet Gilson F144056M
P200 Pipet Gilson F144058M
Phenol red solution Sigma-Aldrich P0290
Phosphate buffered saline (PBS) Sigma-Aldrich P4474
Pipet-Aid XP pipette controller Drummond Scientific 4-000-101
Plasmid pCapsid De novo or Addgene, etc.  N/A We used pACGrh74. 
Plasmid pHelper Addgene 112867
Plasmid pTransgene De novo or Addgene, etc.  N/A We used pdsAAV-GFP.
Pluronic F-68 polyol solution (10%) Mp Biomedicals 92750049
Polyethylene glycol 8000 Research Products International P48080-500.0
Polyethylenimine HCl Max (PEI-Max) Polysciences NC1038561 Dilute in water to 40 μM
Polypropylene centrifuge tubes, sterile Corning 431123 500 mL
Polypropylene centrifuge tubes, sterile Corning 430776 250 mL
Polypropylene Optiseal tubes Beckman Coulter 361625
Serological pipettes Alkali Scientific SP250-B 50 mL
Serological pipettes Alkali Scientific SP225-B 25 mL
Serological pipettes Alkali Scientific SP210-B 10 mL
Serological pipettes Alkali Scientific SP205-B 5 mL
Shaker flasks Fisherbrand PBV1000 1 L
Shaker flasks Fisherbrand PBV50-0 500 mL
Shaker flasks Fisherbrand PBV250 250 mL
Shaker flasks Fisherbrand PBV12-5 125 mL
Sodium chloride solution (5 M) Fisher Scientific NC1752640
Sterile syringes Fisherbrand 14-955-458 5 mL
Syringe filter Millipore SLGV013SL 0.22 micron
Tris-HCl pH 8.5 (1 M) Kd Medical RGE3363
Trypan blue solution Gibco 15250061
Tube rack assembly Beckman Coulter 361646
Tube spacers (x4) Beckman Coulter 361669
Tubing for peristaltic pump Fisher Scientific 14190516
Type 70 Ti fixed-angle titanium rotor Beckman Coulter 337922
Ultra low temperature freezer Set at -70 °C
Vivaspin 20 centrifugal concentrator Sartorius VS2041
Water bath  Set at 37 °C

References

  1. Strauss, K. A., et al. Onasemnogene abeparvovec for presymptomatic infants with three copies of SMN2 at risk for spinal muscular atrophy: the Phase III SPR1NT trial. Nat Med. 28 (7), 1390-1397 (2022).
  2. Fuller-Carter, P. I., Basiri, H., Harvey, A. R., Carvalho, L. S. Focused update on AAV-based gene therapy clinical trials for inherited retinal degeneration. BioDrugs. 34 (6), 763-781 (2020).
  3. George, L. A., et al. Multiyear factor VIII expression after AAV gene transfer for hemophilia A. N Engl J Med. 385 (21), 1961-1973 (2021).
  4. Naso, M. F., Tomkowicz, B., Perry, W. L., Strohl, W. R. Adeno-Associated Virus (AAV) as a vector for gene therapy. Biodrugs. 31 (4), 317-334 (2017).
  5. Atchison, R. W., Casto, B. C., Hammon, W. M. c. D. Adenovirus-associated defective virus particles. Science. 149 (3685), 754-756 (1965).
  6. Wu, Z., Yang, H., Colosi, P. Effect of genome size on AAV vector packaging. Mol Ther. 18 (1), 80-86 (2010).
  7. Samulski, R. J., Muzyczka, N. AAV-mediated gene therapy for research and therapeutic purposes. Annu Rev Virol. 1 (1), 427-451 (2014).
  8. Zolotukhin, S. Production of recombinant adeno-associated virus vectors. Hum Gene Ther. 16 (5), 551-557 (2005).
  9. Penaud-Budloo, M., François, A., Clément, N., Ayuso, E. Pharmacology of recombinant adeno-associated virus production. Mol Ther – Methods Clin Dev. 8, 166-180 (2018).
  10. Costa-Verdera, H., et al. Understanding and Tackling immune responses to adeno-associated viral vectors. Hum Gene Ther. 34 (17-18), 836-852 (2023).
  11. Ertl, H. C. J. Mitigating serious adverse events in gene therapy with AAV Vectors: Vector dose and immunosuppression. Drugs. 83 (4), 287-298 (2023).
  12. Pupo, A., et al. AAV vectors: The Rubik’s cube of human gene therapy. Mol Ther. 30 (12), 3515-3541 (2022).
  13. Marsic, D., et al. Vector design tour de force: Integrating combinatorial and rational approaches to derive novel adeno-associated virus variants. Mol Ther. 22 (11), 1900-1909 (2014).
  14. Grimm, D., Zolotukhin, S. E Pluribus Unum: 50 Years of research, millions of viruses, and one goal-tailored acceleration of AAV evolution. Mol Ther. 23 (12), 1819-1831 (2015).
  15. Biswas, M., et al. Engineering and in vitro selection of a novel AAV3B variant with high hepatocyte tropism and reduced seroreactivity. Mol Ther – Methods Clin Dev. 19, 347-361 (2020).
  16. Perabo, L., et al. In vitro selection of viral vectors with modified tropism: the adeno-associated virus display. Mol Ther. 8 (1), 151-157 (2003).
  17. Crosson, S. M., Dib, P., Smith, J. K., Zolotukhin, S. Helper-free production of laboratory grade AAV and purification by iodixanol density gradient centrifugation. Mol Ther – Methods Clin Dev. 10, 1-7 (2018).
  18. Chan, C., Harris, K. K., Zolotukhin, S., Keeler, G. D. Rational design of AAV-rh74, AAV3B, and AAV8 with limited liver targeting. Viruses. 15 (11), 2168 (2023).
  19. Schmidt, O. W., Cooney, M. K., Foy, H. M. Adeno-associated virus in adenovirus type 3 conjunctivitis. Infect Immun. 11 (6), 1362-1370 (1975).
  20. Grimm, D., Kern, A., Rittner, K., Kleinschmidt, J. A. Novel tools for production and purification of recombinant adenoassociated virus vectors. Hum Gene Ther. 9 (18), 2745-2760 (1998).
  21. Zolotukhin, S., et al. Recombinant adeno-associated virus purification using novel methods improves infectious titer and yield. Gene Ther. 6 (6), 973-985 (1999).
  22. Clark, K. R., Liu, X., Mcgrath, J. P., Johnson, P. R. Highly purified recombinant adeno-associated virus vectors are biologically active and free of detectable helper and wild-type viruses. Hum Gene Ther. 10 (6), 1031-1039 (1999).
  23. Debelak, D., et al. Cation-exchange high-performance liquid chromatography of recombinant adeno-associated virus type 2. J Chromatogr B Biomed Sci App. 740 (2), 195-202 (2000).
  24. Burova, E., Ioffe, E. Chromatographic purification of recombinant adenoviral and adeno-associated viral vectors: methods and implications. Gene Ther. 12 (1), S5-S17 (2005).
  25. Adams, B., Bak, H., Tustian, A. D. Moving from the bench towards a large scale, industrial platform process for adeno-associated viral vector purification. Biotechnol Bioeng. 117 (10), 3199-3211 (2020).
  26. Grieger, J. C., Choi, V. W., Samulski, R. J. Production and characterization of adeno-associated viral vectors. Nat Protoc. 1 (3), 1412-1428 (2006).
  27. Florea, M., et al. High-efficiency purification of divergent AAV serotypes using AAVX affinity chromatography. Mol Ther Methods Clin Dev. 28, 146-159 (2022).
  28. Chamberlain, K., Riyad, J. M., Weber, T. Expressing transgenes that exceed the packaging capacity of adeno-associated virus capsids. Hum Gene Ther Methods. 27 (1), 1-12 (2016).
  29. Green, E. A., Hamaker, N. K., Lee, K. H. Comparison of vector elements and process conditions in transient and stable suspension HEK293 platforms using SARS-CoV-2 receptor binding domain as a model protein. BMC Biotechnol. 23 (1), 7 (2023).
  30. Erbacher, P., Zou, S., Bettinger, T., Steffan, A. M., Remy, J. S. Chitosan-based vector/DNA complexes for gene delivery: Biophysical characteristics and transfection ability. Pharm Res. 15 (9), 1332-1339 (1998).
  31. Vandenberghe, L. H., et al. Efficient serotype-dependent release of functional vector into the culture medium during adeno-associated virus manufacturing. Hum Gene Ther. 21 (10), 1251-1257 (2010).
  32. Summerford, C., Samulski, R. J. Membrane-associated heparan sulfate proteoglycan is a receptor for adeno-associated virus type 2 virions. J Virol. 72 (2), 1438-1445 (1998).
  33. Wright, J. F., et al. Identification of factors that contribute to recombinant AAV2 particle aggregation and methods to prevent its occurrence during vector purification and formulation. Mol Ther. 12 (1), 171-178 (2005).
  34. Gruntman, A. M., et al. Stability and compatibility of recombinant adeno-associated virus under conditions commonly encountered in human gene therapy trials. Hum Gene Ther Methods. 26 (2), 71-76 (2015).
  35. Srivastava, A. Rationale and strategies for the development of safe and effective optimized AAV vectors for human gene therapy. Mol Ther Nucleic Acids. 32, 949-959 (2023).
  36. Mullard, A. FDA approves first gene therapy for Duchenne muscular dystrophy, despite internal objections. Nat Rev Drug Discov. 22 (8), 610-610 (2023).
  37. Center for Biologics Evaluation and Research. Approved Cellular and Gene Therapy Products. US Food Drug Adm. , (2023).
  38. Kang, L., et al. AAV vectors applied to the treatment of CNS disorders: Clinical status and challenges. J Control Release Off J Control Release Soc. 355, 458-473 (2023).
  39. De Wolf, D., Singh, K., Chuah, M. K., VandenDriessche, T. Hemophilia gene therapy: The end of the beginning. Hum Gene Ther. 34 (17-18), 782-792 (2023).
  40. Simons, E. J., Trapani, I. The opportunities and challenges of gene therapy for treatment of inherited forms of vision and hearing loss. Hum Gene Ther. 34 (17-18), 808-820 (2023).
check_url/66460?article_type=t

Play Video

Cite This Article
Harris, K. K., Kondratov, O., Zolotukhin, S. Suspension Culture Production and Purification of Adeno-Associated Virus by Iodixanol Density Gradient Centrifugation for In Vivo Applications. J. Vis. Exp. (204), e66460, doi:10.3791/66460 (2024).

View Video