Summary

アン<em>インビトロ</emマウス椎間板の>器官培養モデル

Published: April 11, 2017
doi:

Summary

椎間板(IVD)の全体の器官培養は、天然の細胞外マトリックス、細胞表現型、および細胞 – マトリックス相互作用を保存します。ここでは、マウスの腰椎とその機能脊髄単位で尾したIVDと、このシステムを利用する複数のアプリケーションを使用してIVD培養系を説明します。

Abstract

椎間板(IVD)変性が腰痛に多大な貢献です。 IVDは、脊椎の荷重を伝達し、減衰させる働きを線維軟骨関節です。 IVDは、プロテオグリカンが豊富な髄核(NP)と軟骨終板に挟まれたコラーゲンが豊富な線維輪(AF)から成ります。一緒に隣接する椎骨と椎骨-IVDの構造は、機能的脊椎ユニット(FSU)を形成します。これらの微細構造はユニークな細胞型だけでなく、ユニークな細胞外基質が含まれています。 FSUの全体の器官培養は、天然の細胞外マトリックス、細胞分化表現型、および細胞 – マトリックス相互作用を保存します。これにより、器官培養技術は、IVDの複雑な生物学的メカニズムを調査するために特に有用です。ここでは、IVDのための病気のメカニズムや治療法を研究するための理想的なプラットフォームを提供し、全体腰椎マウスFSUsを培養するためのハイスループットアプローチを説明します。さらに、我々はSを記述する造影マイクロCTイメージングおよびIVDの三次元高解像度の有限要素モデリングを含む、さらなる研究を行うために、この器官培養法を利用everalアプリケーション。

Introduction

腰痛(LBP)は、職場での世界的な障害や生産性の損失のための主要な因子であり、そして一人のアメリカ人は、LBP処理1に500億ドルを超えると過ごします。流行が、LBPの病因は複雑かつ多因子のまま。しかし、椎間板(IVD)の変性は、LBP 2のための最も重要な危険因子の一つです。

外側線維輪(AF)、内部の髄核(NP)、及び近位および遠位3全体構造を挟む2つの軟骨終板:IVDは、三の微細構造で形成されています。加齢および変性に、IVD成分は、組成、構造的変化、および機械4。これらの変化は、NPにおけるプロテオグリカン及び水和の損失を含む、椎間板の高さを減少し、機械能力5を悪化。これらの変化はあります多くの場合、炎症反応だけでなく、LBP症状6につながる事象のカスケードで最高潮に達する関節腔への好中球および後根神経節の侵入を促進するサイトカインを伴います。

腰痛の発生前に、変性の原因を特定できないことが多いので、IVD変性のメカニズムを研究することは、ヒトでの挑戦です。このように、IVDの臓器まで実験システムを簡素化するの還元主義的アプローチは因果変数のメカニズムの微調整を可能にし、その下流効果5を調べます。システムは、このようにIVDの変性に対する外部刺激の影響の直接的な解釈を可能にする、唯一のネイティブ細胞集団と細胞外マトリックスを周囲に縮小されます。また、低コスト及びマウスモデルのスケーラビリティ、ならびに遺伝子改変動物7の多数は、Tを可能にします彼IVD変性のメカニズムと潜在的な治療法の迅速な目標スクリーニング。ここでは、IVD細胞および組織安定性たIVD、恒常的、機械的、構造的、および炎症性パターンに与えられる特定の焦点で、21日間にわたって維持されたマウス器官培養系を記載しています。この方法を使用して、我々は、椎間板変性の背後にあるメカニズムを理解するために刺し誘発性損傷モデル8でしたIVD機能の変更を監視します。さらに、我々は造影マイクロCTイメージングおよびIVDの三次元高解像度モデリングを含むさらなる研究を行うために、この器官培養法のいくつかのアプリケーションを記載しています。

Protocol

全ての動物実験は、セントルイス動物実験委員会のワシントン大学を遵守して行われました。 1.動物 2系統のマウスを得る:10週齢のBALB / c(N = 6、BALB-M、BALB / cAnNTac)及び10週齢の核因子カッパBルシフェラーゼレポーター動物(NF-κβ-LUC)の上に飼育BALB / cバックグラウンド(N = 6、BALB / C-TG(RELA-LUC)31Xen)。 解剖前に、時間を住居の追加の2分間、続いて5分…

Representative Results

図2-3は、培養マウスたIVD用プロテオグリカン分布、NF-κBの発現、剛性、粘性、椎間板の高さ、及び湿重量の代表的な結果を示します。適切に培養した場合は、コントロール群のIVDパラメータは、新鮮なグループと有意差があってはなりません。培養物が感染または他の方法で侵害された場合、対照群には、(結果は示さず)、特にNF-κBの発現およびプロテオグリカン分布は、新?…

Discussion

このプロトコルは、IVDにおける生物学的変化を監視することに重点を置いて、マウスFSUの器官培養の概要を説明します。これらの培養の成功メンテナンスは慎重な無菌技術を必要とします。具体的には、切開は、2.1から2.6ステップと培養物を3.1から3.6の無菌状態が維持されることを保証するために特別な注意を必要とするステップ、及びこれらの手順は、汚染物質を?…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

この作品は、ワシントン大学の筋骨格系研究センター(NIHのP30のAR057235)、分子イメージングセンター(NIHのP50のCA094056)、メカノトレーニンググラント(NIH 5T32EB018266)、NIH R21AR069804、およびNIH K01AR069116によってサポートされていました。著者は、データ収集の彼の貢献のためのパトリック・ウォン感謝したいと思います。

Materials

96 well plate Midwest Scientific TP92096 Used for biochemical assays
24 well plate Midwest Scientific TP92024 Used for organ culture
25 ml pipettes Midwest Scientific TP94024 Used for organ culture
10 ml pipettes Midwest Scientific TP94010 Used for organ culture
5 ml pipettes Midwest Scientific TP94005 Used for organ culture
500 ml bottle top filters, 22um Midwest Scientific TP99505 Used for filter media
10 ul pipette tips Midwest Scientific NP89140098 Used for biochemical assays
200 ul pipette tips Midwest Scientific NP89140900 Used for biochemical assays
1000 ul pipette tips Midwest Scientific NP89140920 Used for biochemical assays
DMEM /F-12 Invitrogen 11330032 Used for culture media
Optiray 350 Guebert 19133341 Used for contrast enhanced microCT
Fetal Bovine Serum Sigma F2442 Used for culture media
Penicillin Streptomycin  Sigma P4333 Used for culture media
Tetrazolium Blue Chloride Sigma T4375 Used for biochemical assays
D-Luciferin Sigma L6152 Used for bioluminescence imaging
Chondroitin Sulfate Sigma C9819 Used for biochemical assays
10% Phosphomolybdic Acid Solution Sigma HT152 Used for contrast enhanced microCT
Safranin O Sigma S8884 diluted to .1% concentration (in water)
Fast Green FCF Sigma F7258 .001% concentration
Papain from papaya latex Sigma  P3125 Used for biochemical assays
DAPI Sigma-Aldrich D9542 Nucleic acid staining
Cyanoacrylate Glue Loctite 234790 Adhesive 
1.5 ml Microcentrifuge Tubes  Fischer Scientific S348903 Used for biochemical assays
Big Equipment
BioDent ActiveLife For mechanical testing
Cytation 5 Biotek Spectrophotometer
AxioCam503 Carl Zeiss AG Microscope
VivaCT40 Scanco MicroCT
Analytical balance Denver Instrument Company A-200DS Analytical balance
Incubator HERAcell 150i Thermo Scientific Organ Culture
Dissection Scope VistaVision Used during dissection
Laser Micrometer Keyence LK-081 Measuring disc height
Microcentrifuge 5810 R Eppendorf Used for biochemical assays
Microtome Leica  RM2255 Used for histology
Software
Prism 7 GraphPad For statistics
MATLAB R2014a Mathworks For modeling
Osiri-LXIV Pixmeo Open Source
MeshLab v1.3.3 Visual Computing Lab – ISTI – CNR Open Source
PreView/FEBio 2.3 Utah MRL & Columbia MBL Open Source
ImageJ NIH
Microsoft Excel Windows
Dissection Tools
Cohan-Vannas Spring Scissors  Fine Science Tools   15000-02 Or any nice pair of spring scissors
Fine Scissors – Sharp  (small) Fine Science Tools   14060-09
Fine Scissors – Sharp  (larger) Fine Science Tools   14060-11
Dumont #5 Forceps Fine Science Tools   11252-40 At least 2; can also use #3 
Extra Fine Graefe Forceps, serrated Fine Science Tools   11150-10 At least 2
Micro-Adson Forceps, serrated World Precision Instruments 503719-12
Micro-Adson Forceps, teeth World Precision Instruments 501244
Scalpel Handle – #3 Fine Science Tools   10003-12
Scalpel Handle – #4 Fine Science Tools   10004-13
Scalpel Blades – #23 Fine Science Tools   10023-00
Insect Pins , size 000 Fine Science Tools   26000-25
27G Needle BD PrecisionGlide Needles BD305109

Riferimenti

  1. Dagenais, S., Caro, J., Haldeman, S. A systematic review of low back pain cost of illness studies in the United States and internationally. Spine J. 8 (1), 8-20 (2008).
  2. Urban, J., Roberts, S. Degeneration of the intervertbral disc. Arthritis Res Ther. 5 (6), 1-48 (2003).
  3. Mirza, S. K., White, A. A. Anatomy of intervertebral disc and pathophysiology of herniated disc disease. J Clin Laser Med Surg. 13 (3), 131-142 (1995).
  4. Acaroglu, E. R., et al. Degeneration and aging affect the tensile behavior of human lumbar anulus fibrosus. Spine. 20 (24), 2690-2701 (1995).
  5. Abraham, A. C., Liu, J. W., Tang, S. Y. Longitudinal changes in the structure and inflammatory response of the intervertebral disc due to stab injury in a murine organ culture model. J Orthop Res. 34 (8), 1431-1438 (2016).
  6. Ohtori, S., Inoue, G., Miyagi, M., Takahashi, K. Pathomechanisms of discogenic low back pain in humans and animal models. Spine J. 15 (6), 1347-1355 (2015).
  7. Pelle, D. W., et al. Genetic and functional studies of the intervertebral disc: A novel murine intervertebral disc model. PLoS ONE. 9 (12), (2014).
  8. Zhang, H., et al. Time course investigation of intervertebral disc degeneration produced by needle-stab injury of the rat caudal spine. J Neurosurg: Spine. 15 (4), 404-413 (2011).
  9. Liu, J. W., Abraham, A. C., Tang, S. Y. The high-throughput phenotyping of the viscoelastic behavior of whole mouse intervertebral discs using a novel method of dynamic mechanical testing. J Biomech. 48 (10), 2189-2194 (2015).
  10. Lin, K. H., Wu, Q., Leib, D. J., Tang, S. Y. A novel technique for the contrast-enhanced microCT imaging of murine intervertebral discs. J Mech Behav Biomed Mater. 63, (2016).
  11. Pasparakis, M. Regulation of tissue homeostasis by NF-kappaB signalling: implications for inflammatory diseases. Nat Rev: Immunol. 9 (11), 778-788 (2009).
  12. O’Connell, G. D., Vresilovic, E. J., Elliott, D. M. Comparison of animals used in disc research to human lumbar disc geometry. Spine. 32 (3), 328-333 (2007).
  13. Lee, C. R., et al. In vitro organ culture of the bovine intervertebral disc: effects of vertebral endplate and potential for mechanobiology studies. Spine. 31, 515-522 (2006).
  14. Chan, S. C., Gantenbein-Ritter, B. Preparation of Intact Bovine Tail Intervertebral Discs for Organ Culture. J. Vis. Exp. (60), e3490 (2012).
  15. Holguin, N., Aguilar, R., Harland, R. A., Bomar, B. A., Silva, M. J. The aging mouse partially models the aging human spine: lumbar and coccygeal disc height, composition, mechanical properties, and Wnt signaling in young and old mice. J Appl Physiol. 116 (12), (2014).
check_url/it/55437?article_type=t

Play Video

Citazione di questo articolo
Liu, J. W., Lin, K. H., Weber, C., Bhalla, S., Kelso, S., Wang, K., Tang, S. Y. An In Vitro Organ Culture Model of the Murine Intervertebral Disc. J. Vis. Exp. (122), e55437, doi:10.3791/55437 (2017).

View Video