Summary

Ensaio de Unidade Formadora de Microcolônias para Avaliação da Eficácia de Vacinas Contra Tuberculose

Published: July 28, 2023
doi:

Summary

A determinação de unidades formadoras de colônias (UFC) é a técnica padrão-ouro para quantificar bactérias, incluindo o Mycobacterium tuberculosis , que pode levar semanas para formar colônias visíveis. Aqui descrevemos uma micro-UFC para determinação de UFC com maior eficiência de tempo, redução do espaço de laboratório e custo do reagente, e escalabilidade para experimentos de médio e alto rendimento.

Abstract

A tuberculose (TB), principal causa de morte no mundo por um agente infeccioso, matou 1,6 milhão de pessoas em 2022, só sendo superada pela Covid-19 durante a pandemia de 2019-2021. A doença é causada pela bactéria Mycobacterium tuberculosis (M.tb). A cepa de Mycobacterium bovis Bacillus Calmette-Guérin (BCG), única vacina contra a tuberculose, é a mais antiga vacina licenciada no mundo, ainda em uso. Atualmente, há 12 vacinas em testes clínicos e dezenas de vacinas em desenvolvimento pré-clínico. O método de escolha para avaliar a eficácia das vacinas contra TB em estudos pré-clínicos é a enumeração de colônias bacterianas pelo ensaio de unidades formadoras de colônias (UFC). Este ensaio demorado leva de 4 a 6 semanas para ser concluído, requer espaço substancial no laboratório e na incubadora, tem altos custos de reagentes e é propenso a contaminação. Aqui descrevemos um método otimizado para enumeração de colônias, a micro-UFC (mCFU), que oferece uma solução simples e rápida para analisar os resultados de eficácia da vacina M.tb . O ensaio de mCFU requer dez vezes menos reagentes, reduz o período de incubação três vezes, levando de 1 a 2 semanas para ser concluído, reduz o espaço do laboratório e o custo do reagente e minimiza os riscos de saúde e segurança associados ao trabalho com um grande número de M.tb. Além disso, para avaliar a eficácia de uma vacina contra a TB, amostras podem ser obtidas de uma variedade de fontes, incluindo tecidos de animais vacinados infectados com micobactérias. Também descrevemos um método otimizado para produzir uma cultura de micobactérias unicelular, uniforme e de alta qualidade para estudos de infecção. Finalmente, propomos que esses métodos sejam universalmente adotados para estudos pré-clínicos de determinação da eficácia vacinal, levando à redução do tempo no desenvolvimento de vacinas contra TB.

Introduction

A tuberculose (TB) é a principal causa de morte no mundo por um único agente infeccioso, a bactéria Mycobacterium tuberculosis (M.tb), matando mais pessoas do que qualquer outro patógeno. Em 2021, a tuberculose foi responsável por 1,6 milhão de mortes e foi superada pela Covid-19 durante a pandemia1 de 2019-2021. Além disso, de acordo com o relatório global de TB da Organização Mundial da Saúde de 2022, a pandemia de COVID-19 foi responsável por um aumento de novos casos de TB. A OMS também relata grandes quedas no número de pessoas diagnosticadas com TB nesse período, o que poderia aumentar ainda mais o número de casos de TB1.

O Bacillus Calmette-Guérin (BCG) é uma cepa viva atenuada do patogênico Mycobacterium bovis, utilizada pela primeira vez como vacina há mais de 100 anos. Esta é a única vacina contra a TB e é a mais antiga vacina licenciada no mundo ainda em uso 2,3. Atualmente, existem 12 vacinas em diferentes fases de ensaios clínicos4, e dezenas de vacinas estão em desenvolvimento pré-clínico 5,6. A avaliação pré-clínica das vacinas contra TB inclui a avaliação da segurança e imunogenicidade7, que podem ser obtidas em diversos modelos animais, como peixes-zebra, camundongos, cobaias, coelhos, bovinos e primatas não humanos8,9,10. Além disso, avaliar a capacidade de uma vacina em induzir proteção contra a infecção e/ou transmissão da M.tb, ou seja, a eficácia da vacina, requer um desafio M.tb in vivo 5,11. Curiosamente, a vacinação BCG induz efeitos inespecíficos que afetam a sobrevivência de outros patógenos bacterianos e virais12,13 através do mecanismo de imunidade treinada14. Para quantificar a carga bacteriana viável em um animal infectado, o método de escolha é a enumeração de colônias bacterianas através do ensaio de unidades formadoras de colônias (UFC)5,15. A UFC é uma unidade que estima o número de microrganismos (bactérias ou fungos) que formam colônias sob condições específicas de crescimento. As UFCs originam-se de microrganismos viáveis e replicativos, e o número absoluto de microrganismos vivos dentro de cada colônia é difícil de estimar. É incerto se uma colônia se originou de um ou mais microrganismos. A unidade UFC reflete essa incerteza, portanto, uma grande variabilidade pode ser observada em réplicas de uma mesma amostra. Este ensaio demorado requer técnicos especializados treinados para trabalhar em uma instalação de nível de biossegurança 3 (BSL3), espaço substancial de laboratório e incubadora, leva de 4 a 6 semanas para ser concluído e é propenso a contaminação.

Neste estudo, descrevemos um método otimizado para enumeração de colônias, a micro-UFC (mUFC), e oferecemos uma solução simples e rápida para analisar os resultados 15,16,17,18,19,20. O ensaio de mCFU requer dez vezes menos reagentes, reduz o período de incubação três vezes, levando de 1 a 2 semanas para ser concluído, reduz o espaço do laboratório e o custo do reagente e minimiza os riscos de saúde e segurança associados ao trabalho com um grande número de M.tb. Propomos que esse método seja universalmente adotado para estudos pré-clínicos de determinação da eficácia vacinal, levando à redução do tempo no desenvolvimento de vacinas contra TB. Finalmente, este método otimizado de enumeração de UFC tem sido utilizado para quantificar não só micobactérias, mas também outras bactérias, como Escherichia coli e Ralstonia solanacearum21.

Protocol

NOTA: O protocolo descrito aqui é para BCG, mas pode ser aplicado a qualquer micobactéria. A BCG pode ser usada como bactéria substituta para experimentos de TB quando os recursos de BSL3 não estão disponíveis22. Os procedimentos a seguir usando BCG devem ser realizados em um laboratório de nível de biossegurança 2 (BSL2) e seguir as diretrizes de biossegurança apropriadas e boas práticas de laboratório para a manipulação de microrganismos do grupo de risco 2. <p class="jove_titl…

Representative Results

O ensaio de mUFC descrito aqui aumenta a quantidade de informação que pode ser recuperada de uma única placa de Petri para pelo menos 96 vezes. A Figura 5 mostra a comparação de dois métodos de liberação de fármacos para o uso reaproveitado do saquinavir (SQV)31,32 como droga dirigida ao hospedeiro para o tratamento da tuberculose. Neste ensaio, quatro cepas diferentes de Mycobacterium tuberculosis foram usadas para…

Discussion

A TB é um importante problema de saúde pública com importância crescente, particularmente em países de baixa e média renda. A interrupção dos serviços de saúde para diagnosticar e tratar a TB durante a pandemia COVID-19 causou um impacto negativo na incidência de novos casos1. Além disso, as cepas M.tb multidrogas e extensivamente resistentes e a co-infecção de M.tb e HIV devem ser urgentemente abordadas para o controle dessa epidemia 1,…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

Este trabalho foi apoiado por financiamento interno da Faculdade de Medicina da Universidade Católica Portuguesa e financiamento externo da Fundação para a Ciência e a Tecnologia (FCT), no âmbito das bolsas UIDP/04279/2020, UIDB/04279/2020 e EXPL/SAU-INF/0742/2021.

Materials

96-well plates VWR 734-2781
DSLR 15-55 mm lens Nikon AF-P DX NIKKOR 18-55mm f/3.5-5.6G VR
DSLR camera Nikon D3400
DSLR macro lens Sigma MACRO 105mm F2.8 EX DG OS HSM
Fetal calf serum Gibco 10270106
Fiji Software https://fiji.sc/ Fiji is an open-source software supported by several laboratories, institutions, and individuals. All the required plugins are included.
Igepal CA-630 Sigma-Aldrich 18896
L-glutamine Gibco 25030-081
Middlebrook 7H10 BD 262710
Middlebrook 7H9 BD 271310
Multichannel pipette (0.5 – 10 µl) Gilson FA10013
Multichannel pipette (20 – 200 µl) Gilson FA10011
Mycobacterium bovis BCG  American Type Culture Collection ATCC35734 strain TMC 1011 [BCG Pasteur]
OADC enrichment BD 211886
Phosphate buffered saline (PBS) NZYTech MB25201
RPMI 1640 medium Gibco 21875091
Sodium pyruvate Gibco 11360-070
Spectrophotometer UV-6300PC VWR 634-6041
Square Petri dish 120 x 120 mm Corning BP124-05
Tyloxapol Sigma-Aldrich T8761
Ultrasound bath Elma P 30 H VWR 142-0051

Riferimenti

  1. World Health Organization. . Global Tuberculosis Report 2022. , (2022).
  2. Bettencourt, P. J. G., Joosten, S. A., Lindestam Arlehamn, C. S., Behr, M. A., Locht, C., Neyrolles, O. 100 years of the Bacillus Calmette-Guérin vaccine. Vaccine. 39 (50), 7221-7222 (2021).
  3. Bettencourt, P. J. G. The 100th anniversary of bacille Calmette-Guérin (BCG) and the latest vaccines against COVID-19. The International Journal of Tuberculosis and Lung Disease. 25 (8), 611-613 (2021).
  4. Scriba, T. J., Netea, M. G., Ginsberg, A. M. Key recent advances in TB vaccine development and understanding of protective immune responses against Mycobacterium tuberculosis. Seminars in Immunology. 50, 101431 (2020).
  5. McShane, H., Williams, A. A review of preclinical animal models utilised for TB vaccine evaluation in the context of recent human efficacy data. Tuberculosis. 94 (2), 105-110 (2014).
  6. Voss, G., et al. Progress and challenges in TB vaccine development. F1000Research. 7, 199 (2018).
  7. Satti, I., McShane, H. Current approaches toward identifying a correlate of immune protection from tuberculosis. Expert Review of Vaccines. 18 (1), 43-59 (2019).
  8. Young, D. Animal models of tuberculosis. European Journal of Immunology. 39 (8), 2011-2014 (2009).
  9. Pedroza-Roldán, C., Flores-Valdez, M. A. Recent mouse models and vaccine candidates for preventing chronic/latent tuberculosis infection and its reactivation. Pathogens and disease. 75 (6), (2017).
  10. Gong, W., Liang, Y., Wu, X. Animal Models of Tuberculosis Vaccine Research: An Important Component in the Fight against Tuberculosis. BioMed Research International. 2020, 1-21 (2020).
  11. Bettencourt, P., et al. Identification of antigens presented by MHC for vaccines against tuberculosis. NPJ vaccines. 5 (1), 2 (2020).
  12. Moorlag, S. J. C. F. M., Arts, R. J. W., van Crevel, R., Netea, M. G. Non-specific effects of BCG vaccine on viral infections. Clinical Microbiology and Infection. 25 (12), 1473-1478 (2019).
  13. Wilkie, M., et al. Functional in-vitro evaluation of the non-specific effects of BCG vaccination in a randomised controlled clinical study. Scientific Reports. 12 (1), 7808 (2022).
  14. Netea, M. G., et al. Trained immunity: A program of innate immune memory in health and disease. Science. 352 (6284), aaf1098 (2016).
  15. Bettencourt, P., Pires, D., Carmo, N., Anes, E. Application of Confocal Microscopy for Quantification of Intracellular Mycobacteria in Macrophages. Microscopy: Science, Technology, Applications and Education. 1, 614-621 (2010).
  16. Bettencourt, P., Carmo, N., Pires, D., Timóteo, P., Anes, E. Mycobacterial infection of macrophages: the effect of the multiplicity of infection. Antimicrobial research: Novel bioknowledge and educational programs. , 651-664 (2017).
  17. Pires, D., Bettencourt, P., Carmo, N., Niederweis, M., Anes, E. Role of Mycobacterium tuberculosis outer-membrane porins in bacterial survival within macrophages. Drug Discovery Today. 15 (23-24), 1112-1113 (2010).
  18. Pires, D., et al. Mycobacterium tuberculosis Modulates miR-106b-5p to Control Cathepsin S Expression Resulting in Higher Pathogen Survival and Poor T-Cell Activation. Frontiers in immunology. 8 (DEC), 1819 (2017).
  19. Pires, D., et al. Role of Cathepsins in Mycobacterium tuberculosis Survival in Human Macrophages. Scientific reports. 6 (August), 32247 (2016).
  20. Bettencourt, P., et al. Actin-binding protein regulation by microRNAs as a novel microbial strategy to modulate phagocytosis by host cells: the case of N-Wasp and miR-142-3p. Frontiers in cellular and infection microbiology. 3 (June), 19 (2013).
  21. Bhuyan, S., et al. Microliter spotting and micro-colony observation: A rapid and simple approach for counting bacterial colony forming units. Journal of Microbiological Methods. 207, 106707 (2023).
  22. Jackson, S., McShane, H. Challenges in Developing a Controlled Human Tuberculosis Challenge Model. Current topics in microbiology and immunology. , 1-27 (2022).
  23. Darrah, P. A., et al. Prevention of tuberculosis in macaques after intravenous BCG immunization. Nature. 577 (7788), 95-102 (2020).
  24. Madura Larsen, J., et al. BCG stimulated dendritic cells induce an interleukin-10 producing T-cell population with no T helper 1 or T helper 2 bias in vitro. Immunology. 121 (2), 276-282 (2007).
  25. Bickett, T. E., et al. Characterizing the BCG-Induced Macrophage and Neutrophil Mechanisms for Defense Against Mycobacterium tuberculosis. Frontiers in immunology. 11, 1202 (2020).
  26. Pires, D., et al. Interference of Mycobacterium tuberculosis with the endocytic pathways on macrophages and dendritic cells from healthy donors: role of cathepsins. Drug Discovery Today. 15 (23-24), 1112-1112 (2010).
  27. Betts, G., et al. Optimising Immunogenicity with Viral Vectors: Mixing MVA and HAdV-5 Expressing the Mycobacterial Antigen Ag85A in a Single Injection. PLoS ONE. 7 (12), e50447 (2012).
  28. Tanner, R., et al. The influence of haemoglobin and iron on in vitro mycobacterial growth inhibition assays. Scientific reports. 7 (1), 43478 (2017).
  29. McNeill, E., et al. Regulation of mycobacterial infection by macrophage Gch1 and tetrahydrobiopterin. Nature communications. 9 (1), 5409 (2018).
  30. Schindelin, J., et al. Fiji: an open-source platform for biological-image analysis. Nature Methods. 9 (7), 676-682 (2012).
  31. Pereira, M., Vale, N. Saquinavir: From HIV to COVID-19 and Cancer Treatment. Biomolecules. 12 (7), 944 (2022).
  32. Pires, D., et al. Repurposing Saquinavir for Host-Directed Therapy to Control Mycobacterium Tuberculosis Infection. Frontiers in immunology. 12, 647728 (2021).
  33. Pires, D., et al. Liposomal Delivery of Saquinavir to Macrophages Overcomes Cathepsin Blockade by Mycobacterium tuberculosis and Helps Control the Phagosomal Replicative Niches. International journal of molecular sciences. 24 (2), (2023).
  34. Maartens, G., Wilkinson, R. J. Tuberculosis. The Lancet. 370 (9604), 2030-2043 (2007).
  35. Matarazzo, L., Bettencourt, P. J. G. mRNA vaccines: a new opportunity for malaria, tuberculosis and HIV. Frontiers in Immunology. 14, 1172691 (2023).
  36. Young, D., Dye, C. The Development and Impact of Tuberculosis Vaccines. Cell. 124 (4), 683-687 (2006).
  37. Kommareddi, S., Abramowsky, C. R., Swinehart, G. L., Hrabak, L. Nontuberculous mycobacterial infections: Comparison of the fluorescent auramine-o and Ziehl-Neelsen techniques in tissue diagnosis. Human Pathology. 15 (11), 1085-1089 (1984).
  38. Sabiiti, W., et al. A Tuberculosis Molecular Bacterial Load Assay (TB-MBLA). Journal of visualized experiments: JoVE. (158), e60460 (2020).
  39. Somoskövi, A., et al. Comparison of Recoveries of Mycobacterium tuberculosis Using the Automated BACTEC MGIT 960 System, the BACTEC 460 TB System, and Löwenstein-Jensen Medium. Journal of Clinical Microbiology. 38 (6), 2395-2397 (2000).
  40. Tanner, R., et al. The in vitro direct mycobacterial growth inhibition assay (MGIA) for the early evaluation of TB vaccine candidates and assessment of protective immunity: a protocol for non-human primate cells. F1000Research. 10, 257 (2021).
check_url/it/65447?article_type=t

Play Video

Citazione di questo articolo
Pires, D., Bettencourt, P. J. G. Micro-Colony Forming Unit Assay for Efficacy Evaluation of Vaccines Against Tuberculosis. J. Vis. Exp. (197), e65447, doi:10.3791/65447 (2023).

View Video