Summary

一个<em>离体</em>激光诱导脊髓损伤模型,以评估轴索变性的机制在实时

Published: November 25, 2014
doi:

Summary

We present a protocol utilizing two-photon excitation time-lapse microscopy to simultaneously visualize the dynamics of axon and myelin injuries in real time. This proposed protocol permits studies of both intrinsic and extrinsic factors which can influence central myelinated axon fate after injury and contribute to permanent clinical disability.

Abstract

受伤的中枢神经系统轴突不能再生,经常收回远离损伤部位。轴突从最初幸免受伤以后可能发生二次轴索变性。缺乏生长锥形成,再生,和附加有髓轴突突起损耗脊髓内极大地限制了神经恢复以下损伤。评估脊髓髓鞘轴突如何中央到损伤响应,我们开发了一种体外活脊髓模型利用表达黄色荧光蛋白在轴突和一个联络和高度可再现激光诱导脊髓损伤的转基因小鼠,记录的命运轴突和髓磷脂(亲脂性的荧光染料尼罗红)随时间使​​用双光子激发时间推移显微镜。如急性弥漫性轴索损伤,轴索回缩,和髓鞘变性动态过程研究的最佳实时。然而,挫伤为主受伤和运动伪影的非焦点自然界中在体内脊髓成像化妆区分使用高分辨率的显微镜具有挑战性的原发性和继发性轴索损伤反应。此处所描述的体外脊髓模型模拟的临床相关挫伤/压缩诱导轴突病理学的几个方面,包括轴索肿胀,球体形成,轴突横断,和周围的轴突溶胀提供了有用的模型来研究在实时这些动态过程。这种模式的主要优点是极好的时空分辨率,可以让初次损伤的直接损伤轴突和继发性损伤机制之间的差异;试剂直接向灌注液沐浴帘线控输注;精确的改变的环境氛围( 例如,钠离子,已知的贡献者轴突损伤,但几乎不可能在体内操纵);和小鼠模型也提供了一个优点,因为它们提供了一个机会,以可视化和操纵基因鉴定细胞群和亚细胞结构。在这里,我们将介绍如何隔离和图像从小鼠活脊髓捕捉急性弥漫性轴索损伤的动态。

Introduction

轴突变性是发病的一个显着原因跨越多个神经系统疾病,包括神经外伤,中风,自身免疫和神经退行性疾病。不像外周神经系统(PNS),中枢神经系统(CNS)的轴突具有有限的能力来再生一旦由于内在的和外在的障碍( 即,抑制分子,以在髓鞘退化期间瘢痕形成产生和释放的轴突生长)1受伤-7。尽管一些这些障碍已被广泛研究,治疗干预的目的是防止中枢神经系统轴突变性,促进强劲的轴突再生,并恢复功能可连接地,仍然有限。

一旦从它们的体细胞中分离的轴突发生退化称为沃勒变性,其特征是轴索肿胀,球体的形成和最终破碎(8综述)的刻板过程。在相反,所述近端残端保留在与横断外围轴突胞体的连续性,形成一个膨胀的端部,模具回郎飞的最近的节点,然后可以开始生长锥的形成,一个重要的先决条件必需的后续轴突再生9-11。与此相反,许多中央轴突的近端轴突末梢形成特性“endbulbs”或回缩灯泡,不能形成生长锥,而是缩回远离损伤位点的地方,他们伤害12-15后保持数月。除了主轴突损伤,附加轴索损害/损失也可能发生于在很大程度上从初始损伤幸免轴突。最初幸免轴突此延迟轴突损失被称为次级轴突变性。 CNS轴突损伤这个固有响应呈现功能轴突再生更加难以实现的目标,在脑和脊髓。

虽然公顷轴突损伤( 例如,球体的形成,回缩灯泡)的llmarks已良好表征从验尸组织和轴突变性的实验模型中,这些动态过程的分子机制的阐明已受到限制。这些研究大多依赖于静态终结点意见,即天生没有捕捉到随着时间的推移个人轴突响应。虽然外源施加轴索示踪剂是有益的,从静态部分,并在实时成像澄清轴索反应,遗传编码的轴突标记的可用性极大地提高了可视化实时轴突使用荧光显微镜的能力。的确,从Kerschensteiner和同事开创性报告中使用大鼠Thy1-GFP-S小鼠在送他们的预测在脊髓的背神经元列的子集,编码绿色荧光蛋白最初提供的轴索变性和再生的直接证据体内线16。实时成像方法,使用双光子激光扫描显微镜(TPLSM)和兴趣细胞的基因荧光蛋白标记继续提供直接证据和机械洞察到许多不同的动态过程,如轴突变性, 离子信号,轴突再生,星形胶质细胞生理学,小胶质细胞生理学和损伤反应17-25。

在对比轴突,很少是已知的髓鞘反应到损伤的实时性。髓鞘是由中枢神经系统和雪旺氏细胞在PNS少突胶质细胞产生和维持白质的重要​​组成部分。髓鞘绝缘99%的轴突的表面,并通过这样做提供了支持高效快速的跳跃式脉冲传播,最近由Buttermore 等人 26审查的高电阻,低电容保护覆盖物。捕捉髓鞘的动态响应损伤我们使用溶剂化,亲脂性荧光染料尼罗红27。此活力染色的溶剂化性质允许其发射光谱是依赖于物理化学环境28,29的光谱的移位。这些性质是有用的洞察axomyelinic损伤机制,并且可以使用适当选择分光镜和发射滤光片被可视化,或者使用光谱显微镜27解决。例如,尼罗红的发光光谱是蓝移的极性较小的,富含脂质的环境中,例如在脂肪细胞和正常CNS髓磷脂(峰值发射〜580-590纳米)27中。与此相反,在〜625纳米的形成为轴突endbulbs这种活体染料的发光光谱的峰进行轴突顶梢枯死27。虽然特别是在endbulbs与正常髓鞘这些光谱变化背后的确切机制尚不清楚,这种光谱变化可能揭示潜在的改变蛋白质的积累,或混乱导致暴露的疏水性的结合位点27。

在体内成像是观察脊髓性轴索损伤动力在他们自然环境的最终指标,它在技术上是具有挑战性的,需要大量的专业知识手术,并经常重复手术暴露背列可能会引入实验工件( 炎症和疤痕形成)。此外,昂贵的设备,通常需要以允许悬浮液的显微镜物镜下一个完整的动物和定位。动物需要进行仔细的监测,以及确保它们保持温暖,以确保流体被补充,并保证有缺氧由于长时间麻醉成像会议迹象。后者是非常重要的,因为轴突和髓鞘绝对需要不断的灌注和充足的氧气水平来保持活力。然而,这往往是没有报道或在大多数体内研究监测,以日期。此外,运动伪影由于心脏和呼吸(异氟烷麻醉成年鼠:〜300-450次每分钟(BPM)是最佳的维持97-98%的氧饱和度(正常率〜632 BPM)和〜55-65呼吸每分钟(正常率为〜每分钟163次呼吸),分别)) 在体内脊髓成像化妆过程中遇到的30区分使用高分辨率荧光显微镜挑战,因为即使是最快的激光扫描原发性和继发性轴索损伤反应不可避免地受到这些运动文物。进展超快共振扫描仪结合的可植入椎骨刚性框架窗口可以允许在清醒的动物的鼠脊髓的成像,但更快的扫描时间不可避免地降低了信号噪声比恶化图像质量。作为目前用于脑成像在脊髓的成像技术进一步改进可以克服许多这样的障碍,并限制由INA引入潜在的困惑dequate组织灌注, ,31-33。

很多东西被知道关于脑白质生理和白质损伤的机制已利用体外或视神经,周围神经和脊髓白质34-41体外制剂白质决定的。这些准备工作继续推进我们的脑白质损伤机制的知识,因为它们允许控制在变化的环境因素,在活组织控制应用药物和试剂,使用电功能的评估,和轴突的直接荧光显微镜观察和髓鞘。然而,一些以前的方法,观察脊髓背柱条或腹白质条轴突在拆除阶段,可能会影响密切相轴突响应不可避免地伤害面神经轴突。为了充分利用该实验操作上面,避免损坏已经在调查RY纤维,我们使用的体外脊髓型颈椎病的模型,因为它可以防止电源线背方面的直接接触。因此,隔离在软脑膜和邻近浅表背柱轴突的架构仍然是可行的,泰然自若。

在这里,我们描述了一个相对简单的方法,使中央有​​髓轴突的直接可视化,因为它们对一个病灶性损伤的实时动态响应多达8 – 损伤后10+小时。激光诱导脊髓损伤(Lisci酒店)模型允许保持空间受限随着时间的推移原发性和继发性轴索损伤的机制为主要病变(消融部位)之间的差异。开浴成像室可以访问治疗干预,试剂递送和环境操作。推定axomyelinic保护剂可以通过直接观察与冗长和昂贵的实验涉及的组织的过程可以快速评估实时荷兰国际集团,切片,染色,图像采集和分析,从而提供了一个有用的代理模型测试实验药剂中活的动物时,必须评估急性反应和保护性操作。

Protocol

注:所有动物的程序都在通过在路易斯维尔大学的机构动物护理和使用委员会设定的指导方针进行,秉承联邦法规。 1.准备低钙和2毫米的Ca 2+人工脑脊液(学联)的灌流液制备2倍低的Ca 2+(0.1毫摩尔)库存C缓冲区,2倍正常的Ca 2+(2mM的)股票缓冲剂,和2x库存B缓冲液,如表1所记载的单个储液允许的离子含量修饰( <e…

Representative Results

的一个适当的实验室设置隔离,保持生存能力需要,和图像的信息的体外脊髓示于图1的显微镜需要配备一个可调谐脉冲飞秒激光器,适当dicroics和发射滤波器,和一个水浸渍物镜具有高数值孔径(≥1.0)。以确保在解剖脊髓存活,程序应该在冷冻含氧低的Ca 2+脑脊液的存在下,使足够的Ca 2+为隔离轴突膜以密封42来执行。如果不这样做可能会导致axomyelinic…

Discussion

我们描述的成像体外脊髓髓鞘轴突( 即,薄束纤维束)结合激光诱导脊髓损伤,研究主要和次要髓轴突变性的动态进展随时间。 离体的表面的成像的方法脊髓克服了许多与体内成像相关的,如运动伪影和实验者诱发缺氧在长时间成像会议的潜在的并发症。此协议隔离使用含有低的Ca 2+和避免了覆轴突纤维的损伤,在背柱或腹侧白质带制剂一个经常遇到的挫折含?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

DPS acknowledges past and present support in part from grant #2665 and #2934, respectively, from the PVA Research Foundation. PKS is an Alberta Innovates – Health Solutions Scientist, operating funds were provided by the Leblanc Chair for Spinal Cord Research, University of Calgary.

Materials

Material/ Equipment Company Catalog Number Comments/Description
Large bath chamber with slice supports Warner Instruments RC-27L For ex vivo imaging chamber
Standard Slice Supports Warner Instruments SS-3 For ex vivo imaging chamber
Plastic Slice hold-down for RC-27L and RC-29 chambers Warner Instruments SHD-27LP/10 For ex vivo imaging chamber
Suction Tube, Series 20 Classic Design, left handed Warner Instruments ST-1L For ex vivo imaging chamber
Solution In-line heater/cooler Warner Instruments SC-20 To regulate perfusate temperature during imaging
Bipolar temperature controller Warner Instruments CL-100 To regulate perfusate temperature during imaging
Liquid Cooling System Warner Instruments LCS-1 To regulate perfusate temperature during imaging
Cable assembly for heater controllers Warner Instruments CC-28 To regulate perfusate temperature during imaging
Replacement bead thermisitor for CC-28 cable Warner Instruments TS-70B To regulate perfusate temperature during imaging
Magnetic holder with suction tubing Bioscience Tools MTH-S To hold the stainless steel vacuum suction tubing 
Adjustable holder Bioscience Tools MTH To hold the temperature probe
clear silicone sealant For ex vivo imaging chamber
superglue For ex vivo imaging chamber
thin plexiglass strips For ex vivo imaging chamber
nile red Life Technologies N-1142 For labeling myelin

References

  1. Chew, D. J., Fawcett, J. W., Andrews, M. R. The challenges of long-distance axon regeneration in the injured CNS. Prog Brain Res. 201, 253-294 (2012).
  2. Eva, R., Andrews, M. R., Franssen, E. H., Fawcett, J. W. Intrinsic mechanisms regulating axon regeneration: an integrin perspective. Int Rev Neurobiol. 106, 75-104 (2012).
  3. McCall, J., Weidner, N., Blesch, A. Neurotrophic factors in combinatorial approaches for spinal cord regeneration. Cell Tissue Res. 349, 27-37 (2012).
  4. Pernet, V., Schwab, M. E. The role of Nogo-A in axonal plasticity, regrowth and repair. Cell Tissue Res. 349, 97-104 (2012).
  5. Bradbury, E. J., et al. Chondroitinase ABC promotes functional recovery after spinal cord injury. Nature. 416, 636-640 (2002).
  6. Cregg, J. M., et al. Functional regeneration beyond the glial scar. Exp Neurol. 253, 197-207 (2014).
  7. Park, K. K., et al. Promoting axon regeneration in the adult CNS by modulation of the PTEN/mTOR pathway. Science. 322, 963-966 (2008).
  8. Coleman, M. P., Freeman, M. R. Wallerian degeneration, wld(s), and nmnat. Annu Rev Neurosci. 33, 245-267 (2010).
  9. Sulaiman, W., Gordon, T. Neurobiology of peripheral nerve injury, regeneration, and functional recovery: from bench top research to bedside application. Ochsner J. 13, 100-108 (2013).
  10. Bradke, F., Fawcett, J. W., Spira, M. E. Assembly of a new growth cone after axotomy: the precursor to axon regeneration. Nat Rev Neurosci. 13, 183-193 (2012).
  11. Erturk, A., Hellal, F., Enes, J., Bradke, F. Disorganized microtubules underlie the formation of retraction bulbs and the failure of axonal regeneration. J Neurosci. 27, 9169-9180 (2007).
  12. Seif, G. I., Nomura, H., Tator, C. H. Retrograde axonal degeneration ‘dieback’ in the corticospinal tract after transection injury of the rat spinal cord: a confocal microscopy study. J Neurotrauma. 24, 1513-1528 (2007).
  13. Fishman, P. S., Mattu, A. Fate of severed cortical projection axons. J Neurotrauma. 10, 457-470 (1993).
  14. McPhail, L. T., Stirling, D. P., Tetzlaff, W., Kwiecien, J. M., Ramer, M. S. The contribution of activated phagocytes and myelin degeneration to axonal retraction/dieback following spinal cord injury. Eur J Neurosci. 20, 1984-1994 (2004).
  15. Stirling, D. P., et al. Minocycline treatment reduces delayed oligodendrocyte death, attenuates axonal dieback, and improves functional outcome after spinal cord injury. J Neurosci. 24, 2182-2190 (2004).
  16. Kerschensteiner, M., Schwab, M. E., Lichtman, J. W., Misgeld, T. In vivo imaging of axonal degeneration and regeneration in the injured spinal cord. Nat Med. 11, 572-577 (2005).
  17. Kalb, J., Nielsen, T., Fricke, M., Egelhaaf, M., Kurtz, R. In vivo two-photon laser-scanning microscopy of Ca2+ dynamics in visual motion-sensitive neurons. Biochem Biophys Res Commun. 316, 341-347 (2004).
  18. Hirase, H., Qian, L., Bartho, P., Buzsaki, G. Calcium dynamics of cortical astrocytic networks in vivo. PLoS Biol. 2, 96 (2004).
  19. Fenrich, K. K., Weber, P., Rougon, G., Debarbieux, F. Long- and short-term intravital imaging reveals differential spatiotemporal recruitment and function of myelomonocytic cells after spinal cord injury. J Physiol. 591, 4895-4902 (2013).
  20. Canty, A. J., et al. In-vivo single neuron axotomy triggers axon regeneration to restore synaptic density in specific cortical circuits. Nat Commun. 4, 2038 (2013).
  21. Dibaj, P., et al. NO mediates microglial response to acute spinal cord injury under ATP control in vivo. Glia. 58, 1133-1144 (2010).
  22. Davalos, D., et al. Stable in vivo imaging of densely populated glia, axons and blood vessels in the mouse spinal cord using two-photon microscopy. J Neurosci Methods. 169, 1-7 (2008).
  23. Nimmerjahn, A. Two-photon imaging of microglia in the mouse cortex in vivo. Cold Spring Harb Protoc. 2012, (2012).
  24. Nimmerjahn, A., Kirchhoff, F., Helmchen, F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science. 308, 1314-1318 (2005).
  25. Davalos, D., et al. Fibrinogen-induced perivascular microglial clustering is required for the development of axonal damage in neuroinflammation. Nat Commun. 3, 1227 (2012).
  26. Buttermore, E. D., Thaxton, C. L., Bhat, M. A. Organization and maintenance of molecular domains in myelinated axons. J Neurosci Res. 91, 603-622 (2013).
  27. Stirling, D. P., et al. Toll-like receptor 2-mediated alternative activation of microglia is protective after spinal cord injury. Brain. 137, 707-723 (2014).
  28. Greenspan, P., Fowler, S. D. Spectrofluorometric studies of the lipid probe, nile red. J Lipid Res. 26, 781-789 (1985).
  29. Greenspan, P., Mayer, E. P., Fowler, S. D. Nile red: a selective fluorescent stain for intracellular lipid droplets. J Cell Biol. 100, 965-973 (1985).
  30. Ewald, A. J., Werb, Z., Egeblad, M. Monitoring of vital signs for long-term survival of mice under anesthesia. Cold Spring Harb Protoc. 2011, (2011).
  31. Tajima, Y., et al. Cerebral hemodynamic response to acute hyperoxia in awake mice. Brain Res. 1557, 155-163 (2014).
  32. Andermann, M. L., et al. Chronic cellular imaging of entire cortical columns in awake mice using microprisms. Neuron. 80, 900-913 (2013).
  33. Nimmerjahn, A., Mukamel, E. A., Schnitzer, M. J. Motor behavior activates Bergmann glial networks. Neuron. 62, 400-412 (2009).
  34. Tsutsui, S., Stys, P. K. Metabolic injury to axons and myelin. Exp Neurol. 246, 26-34 (2013).
  35. Matute, C., Ransom, B. R. Roles of white matter in central nervous system pathophysiologies. ASN Neuro. 4, (2012).
  36. Matute, C. Calcium dyshomeostasis in white matter pathology. Cell Calcium. 47, 150-157 (2010).
  37. Stys, P. K., Lipton, S. A. White matter NMDA receptors: an unexpected new therapeutic target. Trends Pharmacol Sci. 28, 561-566 (2007).
  38. Baltan, S. Surviving anoxia: a tale of two white matter tracts. Crit Rev Neurobiol. 18, 95-103 (2006).
  39. Stirling, D. P., Stys, P. K. Mechanisms of axonal injury: internodal nanocomplexes and calcium deregulation. Trends Mol Med. 16, 160-170 (2010).
  40. Wang, H., Fu, Y., Zickmund, P., Shi, R., Cheng, J. X. Coherent anti-stokes Raman scattering imaging of axonal myelin in live spinal tissues. Biophys J. 89, 581-591 (2005).
  41. Beirowski, B., Nogradi, A., Babetto, E., Garcia-Alias, G., Coleman, M. P. Mechanisms of axonal spheroid formation in central nervous system Wallerian degeneration. J Neuropathol Exp Neurol. 69, 455-472 (2010).
  42. Shi, R., Asano, T., Vining, N. C., Blight, A. R. Control of membrane sealing in injured mammalian spinal cord axons. J Neurophysiol. 84, 1763-1769 (2000).
  43. Stirling, D. P., Cummins, K., Wayne Chen, ., R, S., Stys, P. Axoplasmic reticulum Ca(2+) release causes secondary degeneration of spinal axons. Ann Neurol. 75, 220-229 (2014).
check_url/kr/52173?article_type=t

Play Video

Cite This Article
Okada, S. L. M., Stivers, N. S., Stys, P. K., Stirling, D. P. An Ex Vivo Laser-induced Spinal Cord Injury Model to Assess Mechanisms of Axonal Degeneration in Real-time. J. Vis. Exp. (93), e52173, doi:10.3791/52173 (2014).

View Video