Summary

Ein<em> In-vitro-</em> Enzymatic Assay zur Transcription Hemmung durch Gallium (III) und H messen<sub> 3</sub> 5,10,15-tris (pentafluorphenyl) Corrole

Published: March 18, 2015
doi:

Summary

Gallium (III) 5,10,15- (Tris) pentafluorophenylcorrole und seine Freebase analogen aufweisen niedrigen mikromolaren Zell-Zytotoxizität. Diese Handschrift beschreibt ein RNA-Transkriptionsreaktion, Imaging-RNA mit einem Ethidiumbromid-gefärbten Gel und Quantifizierung RNA mit UV-Vis-Spektroskopie, um die Transkription Hemmung durch Corrolen bewerten und zeigt eine einfache Methode zur Bewertung Krebskandidat Eigenschaften.

Abstract

Chemotherapie oft mit Breitspektrum-zytotoxischen Substanzen mit vielen Nebenwirkungen und begrenzte Targeting. Corrolen sind eine Klasse von Tetrapyrrol-Makrozyklen, die Differenz zytostatische und zytotoxische Eigenschaften in bestimmten Zelllinien, abhängig von der Identität des chelatisierten Metall und funktionelle Gruppen aufweisen. Die einzigartige Verhalten von funktionalisierten Corrole auf bestimmte Zelllinien wird die Möglichkeit der gezielten Chemotherapie.

Viele Krebsmedikamente sind durch ihre Fähigkeit, die RNA-Transkription zu inhibieren. Hier stellen wir einen Schritt-für-Schritt-Protokoll für die RNA-Transkription in Gegenwart von bekannten und potentiellen Inhibitoren. Die Bewertung der RNA-Produkte der Transkriptionsreaktion durch Gelelektrophorese und UV-Vis-Spektroskopie liefert Informationen über hemmende Eigenschaften potentieller Antikrebsarzneimittelkandidaten und mit Modifikationen an der Assay mehr über deren Wirkmechanismus.

Wenigwird über den molekularen Wirkmechanismus von Corrol Zytotoxizität bekannt. In diesem Experiment betrachten wir zwei Corrol Verbindungen: Gallium (III) 5,10,15- (tris) pentafluorophenylcorrole (Ga (tpfc)) und freien Base analogen 5,10,15- (tris) pentafluorophenylcorrole (tpfc). Ein RNA-Transkriptionsassay wurde verwendet, um die hemmenden Eigenschaften der Corrole untersuchen. Fünf Transkriptionsreaktionen wurden hergestellt: [template DNA-Basen] Verhältnis von 0,01 sind, und einer unbehandelten Kontrolle: mit Actinomycin D, Triptolid, Ga (tpfc) tpfc an einem [komplexen] behandelte DNA.

Die Transkriptionsreaktionen wurden nach 4 h unter Verwendung von Agarosegelelektrophorese und UV-Vis-Spektroskopie analysiert. Es ist klar, Hemmung durch Ga (tpfc), Actinomycin D und Triptolid.

Das RNA-Transkriptionsassay kann modifiziert werden, um mehr mechanistischen Detail durch Variieren der Konzentrationen des Antikrebs-Komplex, DNA oder Polymeraseenzym bereitstellen, oder durch Inkubieren der DNA-Polymerase oder mit dem complexes vor der RNA-Transkription; Diese Modifikationen würden zwischen einer Hemmung Mechanismus mit der DNA oder das Enzym unterscheiden. Zugabe des Komplexes nach der RNA-Transkription verwendet werden, um zu testen, ob die Komplexe zersetzen oder hydrolysiert das RNA ist. Dieser Assay kann auch verwendet werden, um zusätzliche Antikrebskandidaten zu untersuchen.

Introduction

Chemotherapie beinhaltet oft Breitspektrum cytotoxischen Mitteln mit unerwünschten Nebenwirkungen und begrenzten Ausrichtung, aber mit einem besseren Verständnis der Krebsbiologie, gibt es eine ständig steigende Nachfrage nach Antikrebsmitteln mit höheren krebs Targeting Wirksamkeit und weniger Nebenwirkungen. 1 Humankrebszellen werden häufig 2 somit von einem einzigen aktiviert oder überexprimiert Onkogen für das Überleben., viele Krebsmedikamenten durch ihre Fähigkeit, die RNA-Transkription zu inhibieren. Behandlungen, die die Expression dieser Gene zu blockieren Transformation sind wirksam bei der Beseitigung von Krebszellen und führen zu Zelltod. 3 Transformierte Zellen sind empfindlicher gegenüber Störungen in der RNA-Transkription als auch entsprechende normale Zellen. 4 Medikamente gegen Krebs, welche die Transkription hemmen sollen selektiv gehemmt Expression der Onkogene, die notwendig für die Krebszelle, um zu überleben. 5 Folglich RNA Transkription inhibition ist eine nützliche Methode, um mögliche Krebsmedikamentenkandidaten zu identifizieren und mehr über ihre Wirkungsweise. Dieses Protokoll zeigt, dass Ga (tpfc) hemmt die RNA-Transkription auf der gleichen Reihenfolge wie die Chemotherapeutika Actinomycin D und Triptolid; ähnliche Vergleiche können mit diesem Protokoll mit anderen Krebsmedikamentenkandidaten durchgeführt werden. Actinomycin D ist ein RNA-Transkriptionsinhibitor häufig verwendet, um Schwangerschafts trophoblastic Krebs, Hodenkrebs, Wilms-Tumor, rhabdomyosacoma behandeln und Ewing-Sarkom 6. Actinomycin D wurde in der Krebstherapie fast fünfzig Jahre lang verwendet worden, da sie erstmals von der FDA zugelassenen 1964.Triptolide ist ein selektiver Inhibitor der Transkription, die in vitro und de verschiedene tumortragenden Tiermodelle für 30 Jahre untersucht worden ist. 7

Die amphiphile Natur der makrozyklischen Corrolen vermittelt wesentliche Vorteile gegenüber anderen Substanzklassen, wie kleine Moleküle oder biologischens. 8-14 makrocyclischen Charakter ermöglicht Zellpermeabilität, die größer ist als für solche großen Moleküle erwarten ist, und dass sie groß genug ist, um mit makromolekularen Oberflächen, wie jene von Proteinen in Wechselwirkung treten können. 8 Corrole bekannt, um enge kovalente Komplexe mit Biomolekülen zu bilden und Arzneimitteln. 10 zusätzlich zu der inhärenten Cytotoxizität des Corrol Rahmen haben wir gezeigt, daß ein sulfoniertes Corrol wirkt als Trägermolekül für chemotherapeutische Mittel, insbesondere die DNA-interkalierende Anthracyclin Doxorubicin. Wenn das sulfonierte Corrol wurde mit Doxorubicin verabreicht wurde eine 3-fache Steigerung in der IC 50 von Doxorubicin für DU-145-Zellen beobachtet. 9 Corrol Rahmen ist stabil und hat inhärente Absorption und Fluoreszenz-Eigenschaften, die, wenn funktionalisierte laufen einzigartige Absorptionsschichten das kann für die Charakterisierung verwendet werden. 10 Funktionalisierung des Gerüsts nicht von Natur aus affect die photophysikalischen Eigenschaften des Corrol, 9-15, aber, wie mit einem sulfonierten Corrol gesehen, selektiven Modifizieren der Rahmen des Corrol seine biologischen Eigenschaften wesentlich zu verändern. 16. Wir haben bereits ausgewertet sechs metallocorroles gegen sieben menschlichen Krebszelllinien. Die Ergebnisse zeigen, dass eine Toxizität gegenüber menschlichen Krebszellen ist abhängig von der spezifischen Metallionen sowie funktionelle Gruppe Substitution. Zum Beispiel sulfonierte Gallium Corrole erfahren hohe zelluläre Aufnahme und drang selektiv in den Kern der Gehirn metastatischen Prostatakrebszellen (DU-145); die gleiche Corrol, obwohl es nicht in den Kern der anderen Zelllinien durchdringen, weist höhere Zytotoxizität für Brustkrebs (MDA-MB-231), Melanom (SK-MEL-28) und Eierstock- (OVCAR-3) Krebszellen als für Prostatakrebs. 9

Erste Tests auf Zellbasis zeigen, dass diese Verbindungen zeigen Versprechen als Anti-Krebs-Therapeutika, welche furth Verdiensteer Untersuchung des Wirkmechanismus. Transkriptionshemmung mit bestimmten organometallischen Komplexen 17-27 beobachtet, und man versucht, diesen Prozess als ein möglicher Mechanismus für die zytotoxische Verhalten des Corrol Familie untersuchen. Diese Transkriptions-Assay bietet eine einfache, kostengünstige und einfache Methode zur Beurteilung der Inhibierung der Transkription, was mehr detaillierte Informationen über die Wirkung dieser Moleküle in lebende Zellen führt.

Hier wird die Transkription Hemmung von Gallium (III) 5,10,15- (tris) pentafluorophenylcorrole (Ga (tpfc)) und seine freie Base analogen 5,10,15- (tris) pentafluorophenylcorrole (tpfc) (Figur 1) getestet. Anders als bei einigen Übergangsmetallkomplexe, (III) Gallium ist Redox inaktiv und wird daher nicht direkt in der Redox-Prozess des Redox-basierte Stoffwechselwegen beteiligt sind. 28. Unabhängig, Gallium (III) nicht aufweisen cytotoxischen Eigenschaften und ist für therapeutische Zwecke untersucht. Gallium ist die zweite vielversprechendsten Metall für Krebstherapeutika nach Platin und hat zahlreiche Studien und Untersuchungen unterzogen wurden; Nitrat und Chlorid Galliumsalzen wurden in klinischen Studien gegen Hepatom, Lymphom, Blasenkrebs und anderen Krankheiten untersucht worden. 29-34 Gallium (III) ist daher ideal für Anti-Krebs-Corrol Studien. Erste Daten zeigen, Ga (tpfc) und tpfc haben einen niedrigen GI-50, die Drogenkonzentration notwendig, 50% der maximalen Zellproliferation zu hemmen, mit verschiedenen Krebszelllinien (siehe Abbildung 2); Dies bekräftigt die Gültigkeit der weiteren Experimenten auf diesen beiden Verbindungen, ihre hemmende Eigenschaften zu bestimmen. Vergleicht man diese Verbindungen mit den gemeinsamen Krebsmedikamente Actinomycin D und Triptolid. Actinomycin D Interkalate DNA inhibiert RNA Dehnung und induziert Apoptose in bestimmten Zelllinie bei picomolaren Konzentrationen 6,35-37 Triptolid wurde gezeigt, dass das Tumorwachstum zu hemmen. es um Menschen XPB / ERCC3, eine Untereinheit o bindetf Transkriptionsfaktor TFIIH, was zur Hemmung der RNA-Polymerase II-Aktivität. 6-7,38-40

Während es allgemein bekannt ist, dass Corrole aufweisen cytotoxischen Eigenschaften besteht wenig Informationen über die verschiedenen Mechanismen, die aus Funktionalisierung. Corrol Hemmung der RNA-Transkription würde einen besseren Einblick auf ihre Wechselwirkungen mit Biomakromolekülen bieten. Andere Komplexe bekannt, an DNA zu binden, wie dirhodium (II, II) -Komplexe, Chrom (III) Komplexe, Ruthenium (II) Polypyridylkomplexe, Rhodium (III) -Komplexe und verschiedene andere, wurden die RNA-Transkriptionstests unterworfen, 18- 27 was zu mehr Verständnis für ihre Interaktionen mit Biomakromolekülen. Diese einfache und weithin verfügbar Experiment ist auch ein guter erster Test, um die Zytotoxizität Eigenschaften eines Moleküls zu bewerten und festzustellen, ob es verdient eine weitere biologische Tests. Das RNA-Transkriptionsassay ermöglicht auch viele Modifikationen, wie varying die Menge einer Verbindung oder Enzymen verwendet wird; Variieren der Inkubationszeit, der Reaktionszeit und der Probenzeitpunkten; und Verändern der DNA-Matrize Länge und Sequenz, unter anderen Variablen von Interesse, wodurch potenziell eine große Menge von Daten. Diese Transkriptions Assay ist auch leicht erschwinglich Kits mit allen vorgesehenen notwendigen Reaktionskomponenten zur Verfügung, obwohl Komponenten können gekauft und individuell vorbereitet werden. In diesen Experimenten verwenden wir eines kommerziell erhältlichen Kits bekannt, hohe Ausbeute zu haben. 41

Transkription Hemmung beurteilen, nutzen wir zwei Methoden: Agarose-Gelelektrophorese und UV-Vis-Spektroskopie. Agarose-Gel-Elektrophorese ist ein einfaches und effektives Verfahren zur Trennung, Identifizierung und Reinigung von 0,5-bis 25-kb-DNA und RNA-Fragmente. 42 UV-Vis-Spektroskopie kann verwendet werden, um die Konzentration und Reinheit der RNA zu bestimmen. 43

Protocol

HINWEIS: Bei der Arbeit mit RNA pflegen eine saubere Arbeitsumgebung, um eine Verunreinigung durch DNase und RNase Enzyme, die DNA und RNA abbauen zu vermeiden. Stellen Sie sicher, dass die Pipettenspitzen und Schläuche sind DNase und RNase frei. Es ist auch hilfreich, um abwischen Labor Oberflächen und Geräte wie Pipetten, Rohrhalter, etc. mit einer Dekontaminationslösung. 1. RNA-Transkription mit Corrol Behandlung Bereiten Sie die Corrol und Inhibitorverbindungen in einem 0,…

Representative Results

RNA Transcription qualitativ durch Agarosegelelektrophorese Beurteilt Agarosegelelektrophorese wird zur Abbildung der transkribierten RNA. Ethidiumbromid fluoresziert bei der Bindung (λ em = 605 nm, λ ex = 210 nm, 285 nm) 46 ermöglicht Abbildung von RNA. Dunkler Banden im Gel entsprechen höheren Konzentrationen von RNA. Wenn Actinomycin D inhibiert Triptolid oder entweder Corrol komplexen RNA-Transkription ist die Produktion von RNA reduz…

Discussion

Dieser Test zeigt, dass die Zugabe von Ga (tpfc) inhibiert RNA Transkriptions vergleichsweise zu bekannten DNA-bindenden Antikrebs Komplexe Actinomycin D und Triptolid. Die zytotoxische Verhalten von Ga (tpfc) (GI 50 = 58,1 bis 154,7 uM) kann seine hemmenden Eigenschaften zurückzuführen. Da kein Transkriptionshemmung in tpfc beobachtet wird, ist die Zytotoxizität tpfc aufgrund RNA Transkriptionshemmung aber durch andere Mittel noch nicht untersucht verursacht.

In den vier Trans…

Declarações

The authors have nothing to disclose.

Acknowledgements

Wir danken Dr. Cindy N. Chiu für die Hilfe bei der Gelelektrophorese und Andy Zhou und Michael Grodick für die großzügige Spende von DNA und Restriktionsenzym. Wir danken Professor J. Heath und Professor D. Prober für großzügigen Zugang zu Ausrüstung und Materialien. Wir danken Dr. Karn Sorasaenee für Anregungen. Wir danken Mary H. Tang für die Erstellung der Darstellung in der schematische Übersicht in dem Video verwendet. Die Finanzierung wurde von Johnson & Johnson und USC Y86786 vorgesehen.

Materials

Name of Material/ Equipment Company Catalog Number Comments/Description
Actinomycin D Sigma-Aldrich A1410 Store at 2-8 °C , protect from light
Triptolide Sigma-Aldrich T3652 Store at 2-8 °C , protect from light
nuclease-free H2 Life Technologies AM9938
MEGAscript T7 Transcription Kit Life Technologies AM1334 Store at –20 °C 
Ethidium Bromide Sigma-Aldrich E7637 CAUTION: For proper handling procedures of ethidium bromide, please see: http://www.sciencelab.com/msds.php?msdsId=9927667
Tris Acetate Sigma-Aldrich T6025
Ethylenediaminetetraacetic acid (EDTA) Sigma-Aldrich EDS
UltraPure Agarose Life Technologies 16500-100
mini Quick Spin RNA Columns Roche Life Science 11814427001 Store at 2-8 °C , do not freeze
1 kb DNA Ladder New England Biolabs N3232S Store at –20 °C 

Referências

  1. Weinstein, I. B. Addiction to oncogenes—The Achilles heel of cancer. Science. 297, 63-64 (2002).
  2. Derheimer, F. A., Chang, C. W., Ljungman, M. Transcription inhibition: A potential strategy for cancer therapeutics. Eur. J. Cancer. 41 (16), 2569-2576 (2005).
  3. Koumenis, C., Giaccia, A. Transformed cells require continuous activity of RNA polymerase II to resist oncogene-induced apoptosis. Mol. Cell. Biol. 17 (12), 7306-7316 (1997).
  4. Stellrecht, C. M., Chen, L. S. Transcription Inhibition as a Therapeutic Target for Cancer. Cancers. 3 (4), 4170-4190 (2011).
  5. Bensaude, O. Inhibiting eukaryotic transcription: Which compound to choose? How to evaluate its activity. Transcription. 2 (3), 103-108 (2011).
  6. Liu, Q. Triptolide and its expanding multiple pharmacological functions. International Immunopharmacology. 11 (3), 377-383 (2011).
  7. Mahammed, A., Gray, H. B., Weaver, J. J., Sorasaenee, K., Gross, Z. Amphiphilic corroles bind tightly to human serum albumin. Bioconjugate Chemistry. 15 (4), 738-746 (2004).
  8. Lim, P. Differential cytostatic and cytotoxic action of metallocorroles against human cancer cells: Potential platforms for anticancer drug development. Chemical Research in Toxicology. 25 (2), 400-409 (2012).
  9. Bendix, J., Dmochowski, I. J., Gray, H. B., Mahammed, A., Simkhovich, L., Gross, Z. Structural, electrochemical, and photophysical properties of gallium(III) 5,10,15-tris(pentafluorophenyl)corrole. Angewandte Chemie-International Edition. 39 (22), 4048-4051 (2000).
  10. Hwang, J. Y., Gross, Z., Gray, H. B., Medina-Kauwe, L. K., Farkas, D. L. Ratiometric spectral imaging for fast tumor detection and chemotherapy monitoring in vivo. Journal of Biomedical Optics. 16 (6), 1-6 (2011).
  11. Agadjanian, H. Tumor detection and elimination by a targeted gallium corrole. Proceedings of the National Academy of Sciences of the United States of America. 106 (15), 6105-6110 (2009).
  12. Hwang, J. Y. Photoexcitation of tumor-targeted corroles induces singlet oxygen-mediated augmentation of cytotoxicity. Journal of Controlled Release. 163 (3), 368-373 (2012).
  13. Hwang, J. Y., et al. Investigating photoexcitation-induced mitochondrial damage by chemotherapeutic corroles using multimode optical imaging. Journal of Biomedical Optics. 17 (1), 11 (2012).
  14. Hwang, J. Y. A Mechanistic Study of Tumor-Targeted Corrole Toxicity. Molecular Pharmaceutics. 8 (6), 2233-2243 (2011).
  15. Saltsman, I., Mahammed, A., Goldberg, I., Tkachenko, E., Botoshansky, M., Gross, Z. Selective substitution of corroles: Nitration, hydroformylation, and chlorosulfonation. Journal of the American Chemical Society. 124 (25), 7411-7420 (2002).
  16. Gershman, Z., Goldberg, I., Gross, Z. DNA Binding and Catalytic Properties of Positively Charged Corroles. Angewandte Chemie. 46 (23), 4320-4324 (2007).
  17. Fu, P. K., Bradley, P. M., Turro, C. Stabilization of duplex DNA structure and suppression of transcription in vitro by bis(quinone diimine) complexes of rhodium(III) and ruthenium(II). Inorganic Chemistry. 42 (3), 878-884 (2003).
  18. Sorasaenee, K., Fu, P. K. -. L., Angeles-Boza, A. M., Dunbar, K. R., Turro, C. Inhibition of Transcription in Vitro by Anticancer Active Dirhodium(II) Complexes. Inorg. Chem. 42 (4), 1267-1271 (2003).
  19. Aguirre, J. D., Lutterman, D. A., Angeles-Boza, A. M., Dunbar, K. R., Turro, C. Effect of axial coordination on the electronic structure and biological activity of dirhodium(II,II) complexes. Inorganic Chemistry. 46 (18), 7494-7502 (2007).
  20. Raja, N. S., Nair, B. U. Chromium(III) complexes inhibit transcription factors binding to DNA and associated gene expression. Toxicology. 251 (1-3), 61-65 (2008).
  21. Gao, F., Chen, X., Wang, J. Q., Chen, Y., Chao, H., Ji, L. N. In Vitro Transcription Inhibition by Ruthenium(II) Polypyridyl Complexes with Electropositive Ancillary Ligands. Inorganic Chemistry. 48 (13), 5599-5601 (2009).
  22. Chen, X., Gao, F., Zhou, Z. X., Yang, W. Y., Guo, L. T., Ji, L. N. Effect of ancillary ligands on the topoisomerases II and transcription inhibition activity of polypyridyl ruthenium(II) complexes. Journal of Inorganic Biochemistry. 104 (5), 576-582 (2010).
  23. Chen, X., Gao, F., Yang, W. Y., Sun, J., Zhou, Z. X., Ji, L. N. Effects of intercalative ligands on the DNA binding, DNA topoisomerase II and DNA transcription inhibition of polypyridyl ruthenium(II) complexes. Inorganica Chimica Acta. 378 (1), 140-147 (2011).
  24. Chen, X., Gao, F., Yang, W. Y., Zhou, Z. X., Lin, J. Q., Ji, L. N. Structure-activity relationship of polypyridyl ruthenium(II) complexes as DNA intercalators, DNA photocleavage reagents, and DNA topoisomerase and RNA polymerase inhibitors. Chemistry & Biodiveristy. 10 (3), 367-384 (2013).
  25. Chifotides, H. T., Fu, P. K., Dunbar, K. R., Turro, C. Effect of equatorial ligands of dirhodium(II,II) complexes on the efficiency and mechanism of transcription inhibition in vitro. Inorganic Chemistry. 43 (3), 1175-1183 (2004).
  26. Pauly, M., Kayser, I., Schmitz, M., Dicato, M., Del Guerzo, A., Kolber, I., Moucheron, C., Kirsch-De Mesmaeker, A. In vitro inhibition of gene transcription by novel photo-activated polyazaaromatic ruthenium(II) complexes. Chemical Communications. 10, 1086-1087 (2002).
  27. Richardson, D. R. Iron and gallium increase iron uptake from transferring by human melanoma cells: Further examination of the ferric ammonium citrate-activated iron uptake process. Biochimica et Biophysica Acta. 1536 (1), 43-54 (2001).
  28. Collery, P., Keppler, B., Madoulet, C., Desoize, B. Gallium in cancer treatment. Critical Reviews in Oncology / Hematology. 42 (3), 283-296 (2002).
  29. Hedley, D. W., Tripp, E. H., Slowiaczek, P., Mann, G. J. Effect of gallium on DNA synthesis by human T-cell lymphoblasts. Pesquisa do Câncer. 48 (11), 3014-3018 (1988).
  30. Chitambar, C. R., Narasimhan, J., Guy, J., Sem, D. S., O’Brien, W. J. Inhibition of ribonucleotide reductase by gallium in murine leukemic L1210 cells. Pesquisa do Câncer. 51, 6199-6201 (1991).
  31. Seidman, A. D. Continuous infusion gallium nitrate for patients with advanced refractory urothelial tract tumors. Cancer. 68, 2561-2565 (1991).
  32. Chitambar, C. R. Medical applications and toxicities of gallium compounds. International Journal of Environmental Research and Public Health. 7 (5), 2337-2361 (2010).
  33. Chitambar, C. R. Gallium-containing anticancer compounds. Future Medicinal Chemistry. 4 (10), 1257-1272 (2012).
  34. Trask, D. K., Muller, M. T. Stabilization of type I topoisomerase-DNA covalent complexes by actinomycin D. Proceedings of the National Academy of Sciences of the United States of America. 85 (5), 1417-1421 (1988).
  35. Chang, T. C., Tsai, L. C., Hung, M. W., Chu, L. L., Chu, J. T., Chen, Y. C. Effects of transcription and translation inhibitors on a human gastric carcinoma cell line. Potential role of Bcl-X(S) in apoptosis triggered by these inhibitors. Biochemical Pharmacology. 53 (7), 969-977 (1997).
  36. Mischo, H. E., Hemmerich, P., Grosse, F., Zhang, S. Actinomycin D induces histone gamma-H2AX foci and complex formation of gamma-H2AX with Ku70 and nuclear DNA helicase II. The Journal of Biological Chemistry. 280 (10), 9586-9594 (2005).
  37. Titov, D. V. XPB, a subunit of TFIIH, is a target of the natural product triptolide. Nature Chemical Biology. 7 (3), 182-188 (2011).
  38. Leuenroth, S. J., Crews, C. M. Triptolide-induced transcriptional arrest is associated with changes in nuclear substructure. Cancer Researcg. 68 (13), 5257-5266 (2008).
  39. Vispé, S. Triptolide is an inhibitor of RNA polymerase I and II-dependent transcription leading predominantly to down-regulation of short-lived mRNA. Molecular Cancer Therapeutics. 8 (10), 2780-2790 (2009).
  40. . MEGAscript T7 Transcription Kit User Guide. Current Protocols in Molecular Biology. , (2014).
  41. Fleige, S., Pfaffl, M. W. RNA integrity and the effect on the real-time qRT-PCR performance. Molecular Aspects of Medicine. 27 (2-3), 126-139 (2006).
  42. . . Quick Spin Columns Protocol. , (2013).
  43. . . RNA quality control. , (2007).
  44. Sabris, R. W. . Handbook of biological dyes and stains: synthesis and industrial application. , (2010).
check_url/pt/52355?article_type=t

Play Video

Citar este artigo
Tang, G. Y., Pribisko, M. A., Henning, R. K., Lim, P., Termini, J., Gray, H. B., Grubbs, R. H. An In Vitro Enzymatic Assay to Measure Transcription Inhibition by Gallium(III) and H3 5,10,15-tris(pentafluorophenyl)corroles. J. Vis. Exp. (97), e52355, doi:10.3791/52355 (2015).

View Video