Summary

斑马鱼原代细胞的培养与转染

Published: August 17, 2018
doi:

Summary

我们提出了一个有效的和易于使用的协议, 以制备斑马鱼胚胎的原细胞培养的转染和活细胞成像, 以及一个协议, 以准备初级细胞从成年斑马鱼的大脑。

Abstract

斑马鱼的胚胎是透明的, 在母体外迅速发育, 因此可以在完整和发育的脊椎动物体内进行动态生物过程的良好成像。然而, 在整个坐骑中, 不同细胞类型和亚胞结构的形貌的详细成像是有限的。因此, 我们建立了一个有效和易于使用的协议, 培养活原细胞从斑马鱼胚胎和成人组织。

简言之, 2 的 dpf 斑马鱼胚胎 dechorionated、deyolked、消毒, 并与胶原酶分离成单细胞。在过滤步骤后, 主要细胞被镀到玻璃底部的菜肴和培育了几天。新鲜的文化, 尽可能多的长期 differenciated, 可用于高分辨率共焦成像研究。培养物中含有不同的细胞类型, 在聚 l-赖氨酸涂层中, 有横纹肌细胞和神经元突出。为了专门用荧光标记蛋白对亚细胞结构进行标记, 我们还建立了一种电穿孔协议, 允许将质粒 DNA 转染到不同类型, 包括神经元。因此, 在操作者定义的刺激, 复杂细胞行为, 和细胞内动力学的主要斑马鱼细胞可以评估与高空间和时间分辨率。此外, 利用成年斑马鱼的大脑, 我们证明了所描述的离解技术, 以及基本的培养条件, 也为成年斑马鱼组织工作。

Introduction

斑马鱼 (斑马斑马,斑马) 是一个流行的模型脊椎动物为许多领域的基础和生物医学研究1。斑马鱼胚胎发育迅速,前子宫, 是透明的, 并适合显微镜下, 从而提供了良好的先决条件, 研究脊椎动物的发展, 在一个活生生的有机体。由于斑马鱼2的遗传驯良, 许多稳定的转基因报告线与细胞类型特异表达的各种荧光标记已建立允许观察特定的细胞群体。斑马鱼社区提供了各种各样的所谓的 Gal4-driver 线, 携带转基因表达合成 Kal4TA4 (或 KalTA3-equivalent GalFF) 基因与 Gal4-DNA-binding 领域的酵母融合到病毒转录激活域在细胞类型特异增强剂的控制下。这些驱动程序线被交叉到执行器线, 其中运载转基因由定义的上游激活序列 (无人驾驶) 融合到一个记者基因。Kal4TA4 蛋白结合到无人研究的元素, 从而激活细胞类型选择表达的报告基因3,4。这种方法允许对双转基因动物中几乎所有可用增强因子和报告元素进行高度多样的组合研究。

然而, 在一个整体和不断变化的胚胎中, 聚焦于单个细胞或其亚型含量的深度实时成像是有限的。为了解决特定细胞生物学问题的最高分辨率, 使用细胞培养往往是可取的。斑马鱼的一些细胞线存在, 但它们被认为是重选择5,6,7 , 他们的繁殖往往是耗时的。此外, 所有可用的细胞系都是成纤维细胞, 限制实验使用细胞培养到一种类型的单元。因此, 我们建立了一个有效和易于使用的协议, 直接从斑马鱼胚胎和斑马鱼的大脑中制备初级细胞, 以及提高文化的长寿和扩大栽培的多样性的方法。单元格类型。此外, 我们提出了一个程序, 染胚胎原细胞与表达结构的荧光细胞器标记。因此, 细胞形态和亚细胞结构可以用高的空间和时间分辨率来进行分析, 从而保持其关键特征。

Protocol

这里描述的所有动物工作符合法律规定 (欧盟指令 2010/63)。养护和处理鱼类已得到地方当局和不伦瑞克技术大学动物福利代表和下萨克森国家消费者保护和食品安全办公室 (LAVES, 德国奥登堡) 的批准;亚利桑那州§4 (02.05) TSchB。 1. 斑马鱼胚胎主要细胞的制备 2天后受精 (dpf) 斑马鱼胚胎的制备 1天: 根据您的斑马鱼设施经理8的规格, 设?…

Representative Results

图 1G显示了一种典型的从野生型胚胎中提取的具有纹状细胞和神经元样细胞簇的透射光图像。为了更容易地识别某些细胞类型, 可以使用具有细胞类型特异表达的荧光蛋白的转基因线 (图 1H)。 转染 pCS2+-based 质粒11将增强的绿色荧光蛋白 (eGFP)15转化…

Discussion

在这里, 我们提出了两种不同的协议, 培养主要细胞从 2 dpf 斑马鱼胚胎或成年斑马鱼的大脑。

从 2 dpf 斑马鱼中制备原代细胞培养物, 对于任何有基本细胞培养技术经验的人来说, 都是相对容易执行的。然而, 为了获得良好和可重现的结果, 足够数量的胚胎作为起始材料是至关重要的 (100 是最低的)。在胚胎的饲养过程中, 必须避免所有可能的污染源, 以尽可能降低细菌和寄生虫的?…

Declarações

The authors have nothing to disclose.

Acknowledgements

我们感谢 t. Fritsch, a. Asseburg, i. 林德和 S. m。Tokarski 为优秀的动物护理和技术支持。我们感谢 Köster 实验室的所有成员进行了激烈而有益的讨论。我们感激地承认德意志 Forschungsgemeinschaft (高 1949/5-1) 和联邦下萨克森, Niedersächsisches Vorab (VWZN2889) 提供的资金。

Materials

Fish lines
AB (wild-type) established by Streisinger and colleagues, available from the Zebrafish International Resource Center (ZIRC)
Tg(ptf1a:eGFP)jh1 stable transgenic line in which the enhancer of the zebrafish gene ptf1a drives expression of the fluorescent protein EGFP (Parsons et al., 2007)
Tg(XITubb:DsRed)zf148 stable transgenic line in which the Xenopus neural-specific beta tubulin promoter drives expression of the fluorescent protein DsRed  (Peri and Nüsslein-Volhard, 2008)
Name Company Catalog Number Comments
Equipment
centrifuge Eppendorf model 5804 R
ChemiDoc MP imaging system BioRad model XRS+, used to acquire black-and-white images of Petri dishes containing 1 da embryos
confocal laser scanning microscope Leica microsystems model SP8, equipped with 28 °C temperature box and a 63 x objective
epifluorescent microscope Leica microsystems model DM5500B, equipped with 28 °C temperature box and a 40 x objective
Gene Pulser Xcell with capacitance extender BioRad 1652661 electroporation device
Horizontal shaker GFL model 3011
incubator for cell culture (28 °C) Memmert model incubator I
incubator for embryos (28 °C) Heraeus type B6120
light microscope Zeiss model TELAVAL 31
micro pipettes Gilson
sterile work bench Bio Base with laminar flow and UV light
tweezers Dumont Style 5, Inox
vertical tube rotator Labinco B.V. model LD-79
Name Company Catalog Number Comments
Software
Image Lab Software BioRad for the ChemiDoc MP imaging system from BioRad
ImageJ National Institutes of Health used for counting 1 dpf embryos by applying the Count particles-tool to the respective black-and-white images; Rasband, W.S., ImageJ, U. S. National Institutes of Health, Bethesda, Maryland, USA, https://imagej.nih.gov/ij/. (1997-2016).
LAS X Leica Microsystems for both confocal and epifluorescent microscopes from Leica Microsystems
Name Company Catalog Number Comments
Plasmids
pCS-DCX-tdTomato Köster Lab # 1599 based on the backbone pCS2+ (Rupp et al., 1994)
pCS-eGFP Köster Lab # 7 based on the backbone pCS2+ (Rupp et al., 1994)
pCS-H2B-mseCFP Köster Lab # 2379 based on the backbone pCS2+ (Rupp et al., 1994)
pCS-mClover Köster Lab # 3865 based on the backbone pCS2+ (Rupp et al., 1994)
pCS-MitoTag-YFP Köster Lab # 2199 based on the backbone pCS2+ (Rupp et al., 1994)
pCS-ss-RFP-KDEL Köster Lab # 4330 based on the backbone pCS2+ (Rupp et al., 1994)
pCS-VAMP1-mCitrine Köster Lab # 2291 based on the backbone pCS2+ (Rupp et al., 1994)
pSK-UAS:mCherry Köster Lab # 1062 based on the pBluescript-backbone of Stratagene
Plasmid numbers refer to the database entries of the Köster lab. Plasmids are available upon request.
Name Company Catalog Number Comments
Plastic and glass ware
BD Falcon Cell Strainer (40 µm) FALCON REF 352340 distributed by BD Bioscience, used as “landing net” to dip deyolked embryos into ethanol and to transfer them quickly to fresh cell culture medium
1.5 mL reaction tubes Sarstedt 72690550
24-well plate Sarstedt 83.3922
50 mL falconic tube Sarstedt 62.547.004
96-well plate Sarstedt 83.3924.005
EasyStrainer (40 µm) Greiner Bio-One 542 040 with venting slots; used to filter cells after collagenase-mediated dissociation
electroporation cuvette (0.4 cm) Kisker 4905022
glass coverslips Heinz Herenz Medizinalbedarf GmbH 1051201
Microscope slides Thermo Fisher Scientific (Menzel Gläser) 631-0845
Neubauer chamber Henneberg-Sander GmbH 9020-01
Pasteur pipettes (plastic; 3 mL) A. Hartenstein PP05
Petri dishes (plastic; diameter 10 cm) Sarstedt 821473 for zebrafish embryos
pipette tips Sarstedt Blue (1000 µl): 70762; Yellow (200 µl): 70760002; White (10 µL): 701116
sterile cell culture dishes (plastic; diameter 3 cm) TPP Techno Plastic Products AG 93040
sterile cell culture dishes (plastic; diameter 6 cm) Sarstedt 72690550
sterile Petri dishes (plastic; diameter 10 cm) Sarstedt 83.3902 for brain dissection
Name Company Catalog Number Comments
Chemicals and Reagents
sodium chloride Roth 0601.1
4 % paraformaldehyde in 1 x PBS Sigma-Aldrich 16005
4',6-diamidino-2-phenylindole (DAPI) Thermo Fisher Scientific D1306
calcium nitrate tetrahydrate Sigma-Aldrich C1396
ethanol p.a. 100% Sigma-Aldrich 46139
goat α-mouse IgG (Fc specific) FITC conjugated Thermo Fisher Scientific 31547
HEPES Roth 9105.4
high vacuum grease DOW CORNING 3826-50 silicon grease used for self-made glass bottom dishes
magnesium sulfate heptahydrate Merck 105886
methylene blue Serva 29198.01
Monoclonal Anti-Tubulin, Acetylated antibody Sigma-Aldrich T6793
Aqua-Poly/Mount (mounting medium) Polyscience 18606
poly-L-lysine Biochrom L 7240
potasssion chloride Merck 104938
Skim milk Roth 68514-61-4
Texas Red-X Phalloidin Thermo Fisher Scientific T7471
Tricaine Sigma-Aldrich E10521 Synonym: Ethyl 3-aminobenzoate methanesulfonate
Triton X-100 BioRad 1610407
Trypan Blue Gibco by Life Technologies 15250061
Name Company Catalog Number Comments
Enzymes
collagenase (Type 2) Thermo Fisher Scientific 17101015 dissolve powder in cell culture medium (8 mg/mL) and sterile-filter the solution, store aliquots at -20 °C
pronase (from Streptomyces griseus) Roche 11459643001 distributed by Sigma-Aldrich, dissolve in 30% Danieau (10 mg/mL) and store aliquots at -20 °C
Name Company Catalog Number Comments
Medium and solutions for cell culture
1 x PBS (Dulbecco's Phosphate Buffered Saline) Gibco by Life Technologies 14190-169 distributed by Thermo Fisher Scientific
CO2-independent medium Gibco by Life Technologies 18045054 distributed by Thermo Fisher Scientific
filtrated bovine serum (FBS) PAN-Biotech individual batch
glutamine 100 x Gibco by Life Technologies 25030081 distributed by Thermo Fisher Scientific
Leibovitz's L-15 medium Gibco by Life Technologies 11415049 distributed by Thermo Fisher Scientific
PenStrep (10,000 units/mL) Gibco by Life Technologies 15140148 distributed by Thermo Fisher Scientific

Referências

  1. Ablain, J., Zon, L. I. Of fish and men: using zebrafish to fight human diseases. Trends in Cell Biology. 23, 584-586 (2013).
  2. Sassen, W. A., Köster, R. A molecular toolbox for genetic manipulation of zebrafish. Advances in Genomics and Genetics. , 151 (2015).
  3. Scheer, N., Campos-Ortega, J. A. Use of the Gal4-UAS technique for targeted gene expression in the zebrafish. Mechanisms of Development. 80, 153-158 (1999).
  4. Köster, R. W., Fraser, S. E. Tracing transgene expression in living zebrafish embryos. Biologia do Desenvolvimento. 233, 329-346 (2001).
  5. Driever, W., Rangini, Z. Characterization of a cell line derived from zebrafish (Brachydanio rerio) embryos. In Vitro Cellular & Developmental Biology – Animal. 29A, 749-754 (1993).
  6. Badakov, R., Jaźwińska, A. Efficient transfection of primary zebrafish fibroblasts by nucleofection. Cytotechnology. 51, 105-110 (2006).
  7. Senghaas, N., Köster, R. W. Culturing and transfecting zebrafish PAC2 fibroblast cells. Cold Spring Harbor Protocols. , (2009).
  8. Westerfield, M. . The zebrafish book. A guide for the laboratory use of zebrafish (Danio rerio). , (2007).
  9. Basic methods in cellular and molecular biology. Using a hemacytometer to count cells. Journal of Visualized Experiments Available from: https://www.jove.com/science-education/5048/using-a-hemacytometer-to-count-cells (2017)
  10. Rupp, R. A., Snider, L., Weintraub, H. Xenopus embryos regulate the nuclear localization of XMyoD. Genes & Development. 8, 1311-1323 (1994).
  11. Piperno, G., Fuller, M. T. Monoclonal antibodies specific for an acetylated form of alpha-tubulin recognize the antigen in cilia and flagella from a variety of organisms. Journal of Cell Biology. 101 (6), 2085-2094 (1985).
  12. Barden, J. A., Miki, M., Hambly, B. D., Dos Remedios, C. G. Localization of the phalloidin and nucleotide-binding sites on actin. European Journal of Biochemistry. 162 (3), 583-588 (1987).
  13. Kapuscinski, J. DAPI: a DNA-specific fluorescent probe. Biotechnic & Histochemistry. 70 (5), 220-233 (1995).
  14. Gupta, T., Mullins, M. C. Dissection of organs from the adult zebrafish. Journal of Visualized Experiments. 37, E1717 (2010).
  15. Chalfie, M., Tu, Y., Euskirchen, G., Ward, W. W., Prasher, D. C. Green fluorescent protein as a marker for gene expression. Science. 263, 802-805 (1994).
  16. Stornaiuolo, M. KDEL and KKXX retrieval signals appended to the same reporter protein determine different trafficking between endoplasmic reticulum, intermediate compartment, and Golgi complex. Molecular Biology of the Cell. 14, 889-902 (2003).
  17. Lithgow, T. Targeting of proteins to mitochondria. FEBS Letters. 476, 22-26 (2000).
  18. Nagai, T., Ibata, K., Park, E. S., Kubota, M., Mikoshiba, K., Miyawaki, A. A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nature Biotechnology. 20, 87-90 (2002).
  19. Sassen, W. A., Lehne, F., Russo, G., Wargenau, S., Dübel, S., Köster, R. W. Embryonic zebrafish primary cell culture for transfection and live cellular and subcellular imaging. Biologia do Desenvolvimento. 430, 18-31 (2017).
  20. Horesh, D., et al. Doublecortin, a stabilizer of microtubules. Human Molecular Genetics. 8, 1599-1610 (1999).
  21. Shaner, N. C., Campbell, R. E., Steinbach, P. A., Giepmans, B. N. G., Palmer, A. E., Tsien, R. Y. Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nature Biotechnology. 22, 1567-1572 (2004).
  22. Distel, M., Hocking, J. C., Volkmann, K., Köster, R. W. The centrosome neither persistently leads migration nor determines the site of axonogenesis in migrating neurons in vivo. Journal of Cell Biology. 191, 875-890 (2010).
  23. Matsuda, T., Miyawaki, A., Nagai, T. Direct measurement of protein dynamics inside cells using a rationally designed photoconvertible protein. Nature Methods. 5, 339-345 (2008).
  24. Archer, B. T., Ozçelik, T., Jahn, R., Francke, U., Südhof, T. C. Structures and chromosomal localizations of two human genes encoding synaptobrevins 1 and 2. Journal of Biological Chemistry. 265, 17267-17273 (1990).
  25. Griesbeck, O., Baird, G. S., Campbell, R. E., Zacharias, D. A., Tsien, R. Y. Reducing the environmental sensitivity of yellow fluorescent protein. Mechanism and applications. Journal of Biological Chemistry. 276, 29188-29194 (2001).
  26. Shaner, N. C., et al. A bright monomeric green fluorescent protein derived from Branchiostoma lanceolatum. Nature Methods. 10, 407-409 (2013).
  27. Campbell, R. E., et al. A monomeric red fluorescent protein. Procedings of the National Academy of Sciences of the United States of America. 99, 7877-7882 (2002).
  28. Peri, F., Nüsslein-Volhard, C. Live imaging of neuronal degradation by microglia reveals a role for v0-ATPase a1 in phagosomal fusion in vivo. Cell. 133, 916-927 (2008).
  29. Godinho, L., et al. Targeting of amacrine cell neurites to appropriate synaptic laminae in the developing zebrafish retina. Development. 132, 5069-5079 (2005).
  30. Jusuf, P. R., Harris, W. A. Ptf1a is expressed transiently in all types of amacrine cells in the embryonic zebrafish retina. Neural Development. 4, 34 (2009).
  31. Kani, S., et al. Proneural gene-linked neurogenesis in zebrafish cerebellum. Biologia do Desenvolvimento. 343, 1-17 (2010).
  32. Distel, M., Wullimann, M. F., Köster, R. W. Optimized Gal4 genetics for permanent gene expression mapping in zebrafish. Procedings of the National Academy of Sciences of the United States of America. 106, 13365-13370 (2009).
  33. Choorapoikayil, S., Overvoorde, J., den Hertog, J. Deriving cell lines from zebrafish embryos and tumors. Zebrafish. 10, 316-332 (2013).
check_url/pt/57872?article_type=t

Play Video

Citar este artigo
Russo, G., Lehne, F., Pose Méndez, S. M., Dübel, S., Köster, R. W., Sassen, W. A. Culture and Transfection of Zebrafish Primary Cells. J. Vis. Exp. (138), e57872, doi:10.3791/57872 (2018).

View Video