Summary

斑马鱼角膜伤口愈合:从磨损到伤口闭合成像分析

Published: March 01, 2022
doi:

Summary

该协议的重点是通过磨损破坏斑马鱼的眼表面,以评估细胞水平上随后的伤口闭合。这种方法利用眼毛刺来部分去除角膜上皮,并使用扫描电子显微镜来跟踪伤口闭合过程中细胞形态的变化。

Abstract

作为眼睛的透明表面,角膜有助于清晰的视力。由于其位置,这种组织容易受到环境侮辱。事实上,临床上最常遇到的眼部损伤是角膜损伤。虽然角膜伤口愈合已经在小型哺乳动物(即小鼠,大鼠和兔子)中进行了广泛的研究,但角膜生理学研究忽略了其他物种,包括斑马鱼,尽管斑马鱼是一种经典的研究模型。

本报告描述了一种对斑马鱼进行角膜擦伤的方法。伤口在 体内 使用眼毛刺在麻醉鱼身上进行。这种方法允许可重复的上皮伤口,使眼睛的其余部分完好无损。擦伤后,在3小时的过程中监测伤口闭合,之后伤口再上皮化。通过使用扫描电子显微镜,然后进行图像处理,可以研究上皮细胞的形状和顶端突起,以研究角膜上皮伤口闭合过程中的各个步骤。

斑马鱼模型的特征允许研究上皮组织生理学和上皮细胞在组织受到挑战时的集体行为。此外,使用剥夺泪膜影响的模型可以产生关于角膜对压力反应的新答案。最后,该模型还允许描绘受物理伤口的任何上皮组织中涉及的细胞和分子事件。该方法可应用于临床前试验中药物有效性的评价。

Introduction

由于大多数上皮细胞与外部环境接触,它们容易受到身体伤害,因此非常适合研究伤口愈合过程。在经过充分研究的组织中,角膜是研究伤口愈合的细胞和分子方面的一个非常有用的模型。作为一个透明的外表面,它为眼睛提供物理保护,是将光线聚焦到视网膜上的第一个元素。虽然视网膜的结构和细胞组成在物种1之间不同,但角膜的这些元素在所有相机型眼睛中通常都是相似的,无论物种如何。

角膜由三个主要层组成2。第一层和最外层是上皮,它不断更新以确保其透明度。第二层是基质,它含有分散的细胞,称为角质细胞,在一层厚厚的严格组织的胶原纤维中。第三层也是最内层是内皮,它允许营养物质和液体从前室扩散到外层。上皮细胞和基质细胞通过生长因子和细胞因子相互作用3。这种相互作用通过上皮损伤后角质细胞的快速凋亡和随后的增殖45而突出。在更深的伤口的情况下,例如穿刺,角质细胞积极参与愈合过程6

与外部环境接触,角膜身体损伤很常见。其中许多是由小异物7引起的,例如沙子或灰尘。揉眼的反射可导致广泛的上皮擦伤和角膜重塑8.根据伤口的大小和深度,这些身体伤害是痛苦的,需要几天才能愈合9。模型的最佳伤口愈合特性有助于理解伤口闭合的细胞和分子方面。此外,这些模型也被证明可用于测试具有加速角膜愈合潜力的新分子,如前所述1011

这里描述的方案旨在使用斑马鱼作为研究角膜物理损伤的相关模型。该模型对于药理学筛选研究非常方便,因为它允许将分子直接添加到罐水中,从而与愈合的角膜接触。这里提供的细节将帮助科学家对斑马鱼模型进行研究。体内损伤是用暗沉的眼毛刺进行的。对毗邻或远离它的上皮细胞的影响可以通过特异性去除中央角膜上皮来分析。近年来,许多关于啮齿动物角膜的方法的报道集中在12,1314151617上;然而,到目前为止,只有一份报告将这种方法应用于斑马鱼18

由于其简单性,物理伤口有助于描绘上皮细胞在伤口闭合中的作用。角膜损伤的另一个公认模型是化学烧伤,特别是碱烧伤192021。然而,这种方法间接损害整个眼表面,包括外周角膜和角膜基质19。事实上,碱性烧伤可能诱发角膜溃疡、穿孔、上皮混浊和快速新生血管形成22,碱烧伤的不可控结果使该方法不符合一般伤口愈合研究的资格。根据所讨论研究的特定重点,还使用许多其他方法来研究角膜伤口愈合(例如,完全上皮清创23,部分厚度伤口24的化学和机械损伤的组合,延伸到基质25的伤口的准分子激光消融)。眼毛刺的使用将焦点限制在对伤口的上皮反应上,并提供高度可重复的伤口。

与每种伤口施加方法一样,使用眼毛刺有优点和缺点。主要缺点是反应大多是上皮性的,它不能完美地反映临床环境中看到的擦伤。然而,这种方法具有许多优点,包括易于设置和执行,其精度,可重复性以及它是非侵入性的事实,使其成为动物耐受性良好的方法。

Protocol

所有实验均获得国家动物实验委员会的批准。 1. 准备工作 提前准备用于麻醉的三卡因储备溶液26 (本方案中使用的0.4%储备溶液)。尽可能戴上手套并将材料放在通风橱中。 对于50 mL 0.4%溶液,称取200mg三卡因粉末进入50mL管中。将粉末溶解在约45 mL双蒸馏水中。 用1 M Tris(pH 8.8,〜1.25 mL)将三卡因储备溶液的pH值调节至7。将…

Representative Results

本研究描述了一种在斑马鱼角膜伤口愈合实验中使用眼部毛刺的方法。该方法从先前对小鼠的研究进行了修改,其中毛刺被证明可以有效地去除上皮细胞层13。斑马鱼角膜损伤的挑战包括眼睛的尺寸相对较小,并且在耗时的实验的情况下,需要保持恒定的水流通过鳃(如Xu及其同事所描述的28)。这种方法的主要优点是它的简单性和速度。标准解剖显微镜用于控?…

Discussion

角膜物理损伤是眼科患者就诊的最常见原因。因此,建立相关模型以研究角膜病理生理学的不同方面非常重要。到目前为止,小鼠是研究角膜伤口愈合的最常用模型。然而,在鼠伤的眼睛上添加眼药水以验证特定药物对角膜伤口愈合的影响可能很困难。在这方面,斑马鱼模型对于影响角膜伤口愈合的分子的药理学筛选特别有用。这里描述的方法与为鼠标13描述的方法非常相似。</…

Disclosures

The authors have nothing to disclose.

Acknowledgements

作者感谢Pertti Panula访问斑马鱼单元,并感谢Henri Koivula对斑马鱼实验的指导和帮助。这项研究得到了芬兰科学院,Jane and Aatos Erkko基金会,芬兰文化基金会和ATIP-Avenir计划的支持。成像在生物技术研究所的电子显微镜部门和光学显微镜部门进行,由HiLIFE和芬兰生物中心支持。

Materials

0.1M Na-PO4 (sodium phosphate buffer), pH 7.4 in-house Solution is prepared from 1M sodium phosphate buffer (1M Na2HPO4 adjusted to pH 7.4 with 1M NaH2PO4).
0.2M Na-PO4 (sodium phosphate buffer), pH 7.4 in-house Solution is prepared from 1M sodium phosphate buffer (1M Na2HPO4 adjusted to pH 7.4 with 1M NaH2PO4).
0.5mm burr tips Alger Equipment Company BU-5S
1M Tris, pH 8.8 in-house
adhesive tabs Agar Scientific G3347N
Algerbrush burr, Complete instrument Alger Equipment Company BR2-5
Cotton swaps Heinz Herenz Hamburg 1030128
Dissecting plate in-house
Dissecting tools Fine Science Tools
double-distilled water in-house
Eppedorf tubes, 2ml any provider
Ethyl 3-aminobenzoate methanesulfonate salt Sigma A5040 Caution: causes irritation.
Glutaraldehyde, 50% aqueous solution, grade I Sigma G7651 Caution: toxic.
Lidocaine hydrochloride Sigma L5647 Caution: toxic.
mounts Agar Scientific G301P
Petri dish Thermo Scientific 101VR20
pH indicator strips Macherey-Nagel 92110
Plastic spoons any provider
Plastic tubes, 15 ml Greiner Bio-One 188271
Plastic tubes, 50 ml Greiner Bio-One 227261
Scanning electron microscope FEI Quanta 250 FEG
Soft sponge any provider
Sputter coater Quorum Technologies GQ150TS
Stereomicroscope Leica

References

  1. Baden, T., Euler, T., Berens, P. Understanding the retinal basis of vision across species. Nature Reviews.Neuroscience. 21 (1), 5-20 (2020).
  2. Nishida, T., Saika, S., Morishige, N., Manis, M. J., Holland, E. J. Cornea and sclera: Anatomy and physiology. Cornea: Fundamentals, diagnosis and management, 4th ed. , 1-22 (2017).
  3. Wilson, S. E., Liu, J. J., Mohan, R. R. Stromal-epithelial interactions in the cornea. Progress in Retinal and Eye Research. 18 (3), 293-309 (1999).
  4. Wilson, S. E., et al. Epithelial injury induces keratocyte apoptosis: hypothesized role for the interleukin-1 system in the modulation of corneal tissue organization and wound healing. Experimental Eye Research. 62 (4), 325-327 (1996).
  5. Zieske, J. D., Guimaraes, S. R., Hutcheon, A. E. Kinetics of keratocyte proliferation in response to epithelial debridement. Experimental Eye Research. 72 (1), 33-39 (2001).
  6. West-Mays, J. A., Dwivedi, D. J. The keratocyte: corneal stromal cell with variable repair phenotypes. The International Journal of Biochemistry & Cell Biology. 38 (10), 1625-1631 (2006).
  7. Ahmed, F., House, R. J., Feldman, B. H. Corneal abrasions and corneal foreign bodies. Primary Care. 42 (3), 363-375 (2015).
  8. Ben-Eli, H., Erdinest, N., Solomon, A. Pathogenesis and complications of chronic eye rubbing in ocular allergy. Current Opinion in Allergy and Clinical Immunology. 19 (5), 526-534 (2019).
  9. Wilson, S. A., Last, A. Management of corneal abrasions. American Family Physician. 70 (1), 123-128 (2004).
  10. Nagata, M., et al. JBP485 promotes corneal epithelial wound healing. Scientific Reports. 5, 14776 (2015).
  11. Wang, X., et al. MANF promotes diabetic corneal epithelial wound healing and nerve regeneration by attenuating hyperglycemia-induced endoplasmic reticulum stress. Diabetes. 69 (6), 1264-1278 (2020).
  12. Li, F. J., et al. Evaluation of the AlgerBrush II rotating burr as a tool for inducing ocular surface failure in the New Zealand White rabbit. Experimental Eye Research. 147, 1-11 (2016).
  13. Kalha, S., Kuony, A., Michon, F. Corneal epithelial abrasion with ocular burr as a model for cornea wound healing. Journal of Visualized Experiments:JoVE. (137), e58071 (2018).
  14. Kalha, S., et al. Bmi1+ progenitor cell dynamics in murine cornea during homeostasis and wound healing. Stem Cells. 36 (4), 562-573 (2018).
  15. Park, M., et al. Visualizing the contribution of keratin-14(+) limbal epithelial precursors in corneal wound healing. Stem Cell Reports. 12 (1), 14-28 (2019).
  16. Kuony, A., et al. Ectodysplasin-A signaling is a key integrator in the lacrimal gland-cornea feedback loop. Development. 146 (14), (2019).
  17. Farrelly, O., et al. Two-photon live imaging of single corneal stem cells reveals compartmentalized organization of the limbal niche. Cell Stem Cell. 28 (7), 1233-1247 (2021).
  18. Ikkala, K., Michon, F., Stratoulias, V. Unilateral Zebrafish corneal injury induces bilateral cell plasticity supporting wound closure. Scientific Reports. , (2021).
  19. Ormerod, L. D., Abelson, M. B., Kenyon, K. R. Standard models of corneal injury using alkali-immersed filter discs. Investigative Ophthalmology & Visual Science. 30 (10), 2148-2153 (1989).
  20. Anderson, C., Zhou, Q., Wang, S. An alkali-burn injury model of corneal neovascularization in the mouse. Journal of visualized experiments: JoVE. (86), e51159 (2014).
  21. Choi, H., et al. Comprehensive modeling of corneal alkali injury in the rat eye. Current Eye Research. 42 (10), 1348-1357 (2017).
  22. Singh, P., Tyagi, M., Kumar, Y., Gupta, K. K., Sharma, P. D. Ocular chemical injuries and their management. Oman Journal of Ophthalmology. 6 (2), 83-86 (2013).
  23. Pal-Ghosh, S. BALB/c and C57BL6 mouse strains vary in their ability to heal corneal epithelial debridement wounds. Experimental Eye Research. 87 (5), 478-486 (2008).
  24. Chen, J. J., Tseng, S. C. Abnormal corneal epithelial wound healing in partial-thickness removal of limbal epithelium. Investigative Ophthalmology & Visual Science. 32 (8), 2219-2233 (1991).
  25. Xeroudaki, M., Peebo, B., Germundsson, J., Fagerholm, P., Lagali, N. RGTA in corneal wound healing after transepithelial laser ablation in a rabbit model: a randomized, blinded, placebo-controlled study. Acta Ophthalmologica. 94 (7), 685-691 (2016).
  26. . The zebrafish book. A guide for the laboratory use of zebrafish (Danio rerio Available from: https://zfinorg/zf_info/zfbook/zfbk.html (2000)
  27. Schindelin, J., et al. Fiji: an open-source platform for biological-image analysis. Nature Methods. 9 (7), 676-682 (2012).
  28. Xu, C., Volkery, S., Siekmann, A. F. Intubation-based anesthesia for long-term time-lapse imaging of adult zebrafish. Nature Protocols. 10 (12), 2064-2073 (2015).
  29. Crosson, C. E., Klyce, S. D., Beuerman, R. W. Epithelial wound closure in the rabbit cornea. A biphasic process. Investigative Ophthalmology & Visual Science. 27 (4), 464-473 (1986).
  30. Parlanti, P., et al. Axonal debris accumulates in corneal epithelial cells after intraepithelial corneal nerves are damaged: A focused Ion Beam Scanning Electron Microscopy (FIB-SEM) study. Experimental Eye Research. 194, 107998 (2020).
  31. Zhao, X. C., et al. The zebrafish cornea: structure and development. Investigative Ophthalmology & Visual Science. 47 (10), 4341-4348 (2006).
  32. Richardson, R., et al. Re-epithelialization of cutaneous wounds in adult zebrafish combines mechanisms of wound closure in embryonic and adult mammals. Development. 143 (12), 2077-2088 (2016).
  33. van Loon, A. P., Erofeev, I. S., Maryshev, I. V., Goryachev, A. B., Sagasti, A. Cortical contraction drives the 3D patterning of epithelial cell surfaces. The Journal of Cell Biology. 219 (3), (2020).
  34. Vihtelic, T. S., Hyde, D. R. Light-induced rod and cone cell death and regeneration in the adult albino zebrafish (Danio rerio) retina. Journal of Neurobiology. 44 (3), 289-307 (2000).
  35. Poss, K. D., Wilson, L. G., Keating, M. T. Heart regeneration in zebrafish. Science. 298 (5601), 2188-2190 (2002).
  36. Becker, T., Wullimann, M. F., Becker, C. G., Bernhardt, R. R., Schachner, M. Axonal regrowth after spinal cord transection in adult zebrafish. The Journal of Comparative Neurology. 377 (4), 577-595 (1997).
  37. Hu, X., et al. Sirt6 deficiency impairs corneal epithelial wound healing. Aging. 10 (8), 1932-1946 (2018).
  38. Ksander, B. R., et al. ABCB5 is a limbal stem cell gene required for corneal development and repair. Nature. 511 (7509), 353-357 (2014).
  39. Pan, Y. A., et al. Zebrabow: multispectral cell labeling for cell tracing and lineage analysis in zebrafish. Development. 140 (13), 2835-2846 (2013).

Play Video

Cite This Article
Ikkala, K., Raatikainen, S., Michon, F. Zebrafish Corneal Wound Healing: From Abrasion to Wound Closure Imaging Analysis. J. Vis. Exp. (181), e63605, doi:10.3791/63605 (2022).

View Video