Summary

Cicatrización de heridas corneales de pez cebra: de la abrasión al análisis de imágenes de cierre de heridas

Published: March 01, 2022
doi:

Summary

Este protocolo se centra en dañar la superficie ocular del pez cebra a través de la abrasión para evaluar el posterior cierre de la herida a nivel celular. Este enfoque explota una rebaba ocular para eliminar parcialmente el epitelio corneal y utiliza microscopía electrónica de barrido para rastrear los cambios en la morfología celular durante el cierre de la herida.

Abstract

Como la superficie transparente del ojo, la córnea es fundamental para una visión clara. Debido a su ubicación, este tejido es propenso a los insultos ambientales. De hecho, las lesiones oculares que se encuentran clínicamente con mayor frecuencia son las de la córnea. Si bien la cicatrización de heridas corneales se ha estudiado ampliamente en pequeños mamíferos (es decir, ratones, ratas y conejos), los estudios de fisiología corneal han descuidado otras especies, incluido el pez cebra, a pesar de que el pez cebra es un modelo de investigación clásico.

Este informe describe un método para realizar una abrasión corneal en el pez cebra. La herida se realiza in vivo en peces anestesiados utilizando una rebaba ocular. Este método permite una herida epitelial reproducible, dejando el resto del ojo intacto. Después de la abrasión, el cierre de la herida se controla en el transcurso de 3 h, después de lo cual la herida se reepiteliza. Mediante el uso de microscopía electrónica de barrido, seguida de procesamiento de imágenes, se puede investigar la forma de la célula epitelial y las protuberancias apicales para estudiar los diversos pasos durante el cierre de la herida epitelial corneal.

Las características del modelo de pez cebra permiten estudiar la fisiología del tejido epitelial y el comportamiento colectivo de las células epiteliales cuando el tejido es desafiado. Además, el uso de un modelo privado de la influencia de la película lagrimal puede producir nuevas respuestas con respecto a la respuesta corneal al estrés. Finalmente, este modelo también permite la delineación de los eventos celulares y moleculares involucrados en cualquier tejido epitelial sometido a una herida física. Este método se puede aplicar a la evaluación de la eficacia del fármaco en las pruebas preclínicas.

Introduction

Como la mayoría de los epitelios están en contacto con el entorno externo, son propensos a lesiones físicas, lo que los hace muy adecuados para el estudio de los procesos de curación de heridas. Entre los tejidos bien estudiados, la córnea es un modelo extremadamente útil en la investigación de los aspectos celulares y moleculares de la cicatrización de heridas. Como superficie externa transparente, proporciona protección física al ojo y es el primer elemento para enfocar la luz en la retina. Si bien la estructura y la composición celular de la retina difieren entre las especies1, estos elementos de la córnea son generalmente similares en todos los ojos de tipo cámara, independientemente de la especie.

La córnea se compone de tres capas principales2. La primera y más externa capa es el epitelio, que se renueva constantemente para garantizar su transparencia. La segunda capa es el estroma, que contiene células dispersas, llamadas queratocitos, dentro de una capa gruesa de fibras de colágeno estrictamente organizadas. La tercera capa más interna es el endotelio, que permite la difusión de nutrientes y líquidos desde la cámara anterior a las capas externas. Las células epiteliales y estromales interactúan a través de factores de crecimiento y citoquinas3. Esta interacción se pone de manifiesto por la rápida apoptosis y posterior proliferación de queratocitos tras lesión epitelial 4,5. En caso de una herida más profunda, como una punción, los queratocitos toman parte activa en el proceso de curación6.

Al estar en contacto con el entorno externo, las lesiones físicas corneales son comunes. Muchos de ellos son causados por pequeños objetos extraños7, como arena o polvo. El reflejo del frotamiento ocular puede dar lugar a abrasiones epiteliales extensas y remodelación corneal8. De acuerdo con el tamaño y la profundidad de la herida, estas lesiones físicas son dolorosas y tardan varios días en sanar9. Las características óptimas de cicatrización de heridas de un modelo facilitan la comprensión de los aspectos celulares y moleculares del cierre de heridas. Además, tales modelos también han demostrado ser útiles para probar nuevas moléculas con el potencial de acelerar la curación corneal, como se demostró previamente10,11.

El protocolo descrito aquí tiene como objetivo utilizar el pez cebra como un modelo relevante para estudiar la lesión física corneal. Este modelo es muy conveniente para los estudios de cribado farmacológico, ya que permite que las moléculas se agreguen directamente al agua del tanque y, por lo tanto, entren en contacto con una córnea curativa. Los detalles proporcionados aquí ayudarán a los científicos a realizar sus estudios sobre el modelo de pez cebra. La lesión in vivo se realiza con una rebaba ocular opaca. El impacto en las células epiteliales adyacentes o a distancia de él se puede analizar eliminando específicamente el epitelio corneal central. En los últimos años, numerosos informes se centraron en dicho método en la córnea de roedores 12,13,14,15,16,17; sin embargo, hasta la fecha, sólo un informe ha aplicado este método al pez cebra18.

Debido a su simplicidad, la herida física es útil para delinear el papel de las células epiteliales en el cierre de la herida. Otro modelo bien establecido de lesión corneal es la quemadura química, especialmente la quemadura alcalina 19,20,21. Sin embargo, tal enfoque daña indirectamente toda la superficie del ojo, incluida la córnea periférica y el estroma corneal19. De hecho, las quemaduras alcalinas potencialmente inducen úlceras corneales, perforaciones, opacificación epitelial y neovascularización rápida22, y el resultado incontrolable de las quemaduras alcalinas descalifica ese enfoque para los estudios generales de cicatrización de heridas. También se utilizan muchos otros métodos para investigar la cicatrización de heridas corneales de acuerdo con el enfoque particular del estudio en cuestión (por ejemplo, desbridamiento epitelial completo23, la combinación de lesiones químicas y mecánicas para heridas de espesor parcial24, ablación con láser excímero para heridas que se extienden hasta el estroma25). El uso de una rebaba ocular restringe el punto focal a la respuesta epitelial a la herida y proporciona una herida altamente reproducible.

Al igual que con cada método de infligir heridas, el uso de una rebaba ocular tiene ventajas y desventajas. La principal desventaja es que la respuesta es en su mayoría epitelial, no refleja perfectamente las abrasiones observadas en el entorno clínico. Sin embargo, este método tiene numerosas ventajas, incluida la facilidad con la que se puede configurar y realizar, su precisión, su reproducibilidad y el hecho de que no es invasivo, lo que lo convierte en un método bien tolerado por los animales.

Protocol

Todos los experimentos fueron aprobados por la junta nacional de experimentación con animales. 1. Preparativos Prepare la solución madre de tricaína utilizada para la anestesiacon 26 de anticipación (solución madre al 0,4% utilizada en este protocolo). Use guantes y mantenga los materiales en una campana de humos siempre que sea posible. Para 50 ml de una solución al 0,4%, pesar 200 mg de polvo de tricaína en un tubo de 50 ml. D…

Representative Results

Este estudio describe un método que utiliza una rebaba oftálmica en experimentos de curación de heridas corneales de pez cebra. El método se modifica a partir de estudios previos en ratones, donde se demostró que la rebaba elimina las capas de células epiteliales de manera eficiente13. Los desafíos en la herida corneal del pez cebra incluyen el tamaño relativamente pequeño del ojo y, en el caso de experimentos que consumen mucho tiempo, la necesidad de mantener un flujo constante de agua …

Discussion

Las lesiones físicas corneales son la causa más común de visitas de pacientes oftalmológicos al hospital. Por lo tanto, es importante establecer modelos relevantes para el estudio de diferentes aspectos de la fisiopatología corneal. Hasta ahora, el ratón es el modelo más utilizado para el estudio de la cicatrización de heridas corneales. Sin embargo, agregar gotas para los ojos en los ojos heridos murinos para validar el impacto de medicamentos específicos en la cicatrización de heridas corneales puede ser dif?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Los autores agradecen a Pertti Panula por el acceso a la unidad de pez cebra y a Henri Koivula por la orientación y ayuda con los experimentos del pez cebra. Esta investigación fue apoyada por la Academia de Finlandia, la Fundación Jane y Aatos Erkko, la Fundación Cultural Finlandesa y el Programa ATIP-Avenir. Las imágenes se realizaron en la unidad de Microscopía Electrónica y la Unidad de Microscopía de Luz, Instituto de Biotecnología, con el apoyo de HiLIFE y Biocenter Finland.

Materials

0.1M Na-PO4 (sodium phosphate buffer), pH 7.4 in-house Solution is prepared from 1M sodium phosphate buffer (1M Na2HPO4 adjusted to pH 7.4 with 1M NaH2PO4).
0.2M Na-PO4 (sodium phosphate buffer), pH 7.4 in-house Solution is prepared from 1M sodium phosphate buffer (1M Na2HPO4 adjusted to pH 7.4 with 1M NaH2PO4).
0.5mm burr tips Alger Equipment Company BU-5S
1M Tris, pH 8.8 in-house
adhesive tabs Agar Scientific G3347N
Algerbrush burr, Complete instrument Alger Equipment Company BR2-5
Cotton swaps Heinz Herenz Hamburg 1030128
Dissecting plate in-house
Dissecting tools Fine Science Tools
double-distilled water in-house
Eppedorf tubes, 2ml any provider
Ethyl 3-aminobenzoate methanesulfonate salt Sigma A5040 Caution: causes irritation.
Glutaraldehyde, 50% aqueous solution, grade I Sigma G7651 Caution: toxic.
Lidocaine hydrochloride Sigma L5647 Caution: toxic.
mounts Agar Scientific G301P
Petri dish Thermo Scientific 101VR20
pH indicator strips Macherey-Nagel 92110
Plastic spoons any provider
Plastic tubes, 15 ml Greiner Bio-One 188271
Plastic tubes, 50 ml Greiner Bio-One 227261
Scanning electron microscope FEI Quanta 250 FEG
Soft sponge any provider
Sputter coater Quorum Technologies GQ150TS
Stereomicroscope Leica

References

  1. Baden, T., Euler, T., Berens, P. Understanding the retinal basis of vision across species. Nature Reviews.Neuroscience. 21 (1), 5-20 (2020).
  2. Nishida, T., Saika, S., Morishige, N., Manis, M. J., Holland, E. J. Cornea and sclera: Anatomy and physiology. Cornea: Fundamentals, diagnosis and management, 4th ed. , 1-22 (2017).
  3. Wilson, S. E., Liu, J. J., Mohan, R. R. Stromal-epithelial interactions in the cornea. Progress in Retinal and Eye Research. 18 (3), 293-309 (1999).
  4. Wilson, S. E., et al. Epithelial injury induces keratocyte apoptosis: hypothesized role for the interleukin-1 system in the modulation of corneal tissue organization and wound healing. Experimental Eye Research. 62 (4), 325-327 (1996).
  5. Zieske, J. D., Guimaraes, S. R., Hutcheon, A. E. Kinetics of keratocyte proliferation in response to epithelial debridement. Experimental Eye Research. 72 (1), 33-39 (2001).
  6. West-Mays, J. A., Dwivedi, D. J. The keratocyte: corneal stromal cell with variable repair phenotypes. The International Journal of Biochemistry & Cell Biology. 38 (10), 1625-1631 (2006).
  7. Ahmed, F., House, R. J., Feldman, B. H. Corneal abrasions and corneal foreign bodies. Primary Care. 42 (3), 363-375 (2015).
  8. Ben-Eli, H., Erdinest, N., Solomon, A. Pathogenesis and complications of chronic eye rubbing in ocular allergy. Current Opinion in Allergy and Clinical Immunology. 19 (5), 526-534 (2019).
  9. Wilson, S. A., Last, A. Management of corneal abrasions. American Family Physician. 70 (1), 123-128 (2004).
  10. Nagata, M., et al. JBP485 promotes corneal epithelial wound healing. Scientific Reports. 5, 14776 (2015).
  11. Wang, X., et al. MANF promotes diabetic corneal epithelial wound healing and nerve regeneration by attenuating hyperglycemia-induced endoplasmic reticulum stress. Diabetes. 69 (6), 1264-1278 (2020).
  12. Li, F. J., et al. Evaluation of the AlgerBrush II rotating burr as a tool for inducing ocular surface failure in the New Zealand White rabbit. Experimental Eye Research. 147, 1-11 (2016).
  13. Kalha, S., Kuony, A., Michon, F. Corneal epithelial abrasion with ocular burr as a model for cornea wound healing. Journal of Visualized Experiments:JoVE. (137), e58071 (2018).
  14. Kalha, S., et al. Bmi1+ progenitor cell dynamics in murine cornea during homeostasis and wound healing. Stem Cells. 36 (4), 562-573 (2018).
  15. Park, M., et al. Visualizing the contribution of keratin-14(+) limbal epithelial precursors in corneal wound healing. Stem Cell Reports. 12 (1), 14-28 (2019).
  16. Kuony, A., et al. Ectodysplasin-A signaling is a key integrator in the lacrimal gland-cornea feedback loop. Development. 146 (14), (2019).
  17. Farrelly, O., et al. Two-photon live imaging of single corneal stem cells reveals compartmentalized organization of the limbal niche. Cell Stem Cell. 28 (7), 1233-1247 (2021).
  18. Ikkala, K., Michon, F., Stratoulias, V. Unilateral Zebrafish corneal injury induces bilateral cell plasticity supporting wound closure. Scientific Reports. , (2021).
  19. Ormerod, L. D., Abelson, M. B., Kenyon, K. R. Standard models of corneal injury using alkali-immersed filter discs. Investigative Ophthalmology & Visual Science. 30 (10), 2148-2153 (1989).
  20. Anderson, C., Zhou, Q., Wang, S. An alkali-burn injury model of corneal neovascularization in the mouse. Journal of visualized experiments: JoVE. (86), e51159 (2014).
  21. Choi, H., et al. Comprehensive modeling of corneal alkali injury in the rat eye. Current Eye Research. 42 (10), 1348-1357 (2017).
  22. Singh, P., Tyagi, M., Kumar, Y., Gupta, K. K., Sharma, P. D. Ocular chemical injuries and their management. Oman Journal of Ophthalmology. 6 (2), 83-86 (2013).
  23. Pal-Ghosh, S. BALB/c and C57BL6 mouse strains vary in their ability to heal corneal epithelial debridement wounds. Experimental Eye Research. 87 (5), 478-486 (2008).
  24. Chen, J. J., Tseng, S. C. Abnormal corneal epithelial wound healing in partial-thickness removal of limbal epithelium. Investigative Ophthalmology & Visual Science. 32 (8), 2219-2233 (1991).
  25. Xeroudaki, M., Peebo, B., Germundsson, J., Fagerholm, P., Lagali, N. RGTA in corneal wound healing after transepithelial laser ablation in a rabbit model: a randomized, blinded, placebo-controlled study. Acta Ophthalmologica. 94 (7), 685-691 (2016).
  26. . The zebrafish book. A guide for the laboratory use of zebrafish (Danio rerio Available from: https://zfinorg/zf_info/zfbook/zfbk.html (2000)
  27. Schindelin, J., et al. Fiji: an open-source platform for biological-image analysis. Nature Methods. 9 (7), 676-682 (2012).
  28. Xu, C., Volkery, S., Siekmann, A. F. Intubation-based anesthesia for long-term time-lapse imaging of adult zebrafish. Nature Protocols. 10 (12), 2064-2073 (2015).
  29. Crosson, C. E., Klyce, S. D., Beuerman, R. W. Epithelial wound closure in the rabbit cornea. A biphasic process. Investigative Ophthalmology & Visual Science. 27 (4), 464-473 (1986).
  30. Parlanti, P., et al. Axonal debris accumulates in corneal epithelial cells after intraepithelial corneal nerves are damaged: A focused Ion Beam Scanning Electron Microscopy (FIB-SEM) study. Experimental Eye Research. 194, 107998 (2020).
  31. Zhao, X. C., et al. The zebrafish cornea: structure and development. Investigative Ophthalmology & Visual Science. 47 (10), 4341-4348 (2006).
  32. Richardson, R., et al. Re-epithelialization of cutaneous wounds in adult zebrafish combines mechanisms of wound closure in embryonic and adult mammals. Development. 143 (12), 2077-2088 (2016).
  33. van Loon, A. P., Erofeev, I. S., Maryshev, I. V., Goryachev, A. B., Sagasti, A. Cortical contraction drives the 3D patterning of epithelial cell surfaces. The Journal of Cell Biology. 219 (3), (2020).
  34. Vihtelic, T. S., Hyde, D. R. Light-induced rod and cone cell death and regeneration in the adult albino zebrafish (Danio rerio) retina. Journal of Neurobiology. 44 (3), 289-307 (2000).
  35. Poss, K. D., Wilson, L. G., Keating, M. T. Heart regeneration in zebrafish. Science. 298 (5601), 2188-2190 (2002).
  36. Becker, T., Wullimann, M. F., Becker, C. G., Bernhardt, R. R., Schachner, M. Axonal regrowth after spinal cord transection in adult zebrafish. The Journal of Comparative Neurology. 377 (4), 577-595 (1997).
  37. Hu, X., et al. Sirt6 deficiency impairs corneal epithelial wound healing. Aging. 10 (8), 1932-1946 (2018).
  38. Ksander, B. R., et al. ABCB5 is a limbal stem cell gene required for corneal development and repair. Nature. 511 (7509), 353-357 (2014).
  39. Pan, Y. A., et al. Zebrabow: multispectral cell labeling for cell tracing and lineage analysis in zebrafish. Development. 140 (13), 2835-2846 (2013).
check_url/63605?article_type=t

Play Video

Cite This Article
Ikkala, K., Raatikainen, S., Michon, F. Zebrafish Corneal Wound Healing: From Abrasion to Wound Closure Imaging Analysis. J. Vis. Exp. (181), e63605, doi:10.3791/63605 (2022).

View Video