Summary

一种微创、准确、高效的小鼠胸腺内注射技术

Published: August 23, 2022
doi:

Summary

本协议描述了为小鼠胸腺内注射建立的介入放射学程序,以避免开放手术的风险并提高盲经皮注射的准确性。

Abstract

小鼠模型中的胸腺内注射是研究胸腺和免疫功能(包括遗传和获得性T细胞疾病)的重要技术。这需要将试剂和/或细胞直接沉积到活小鼠胸腺中的方法。传统的胸腺内注射方法包括胸外科或微创经皮盲注,这两种方法都有明显的局限性。超高频超声成像装置使图像引导经皮注射在小鼠中成为可能,大大提高了经皮注射方法的注射精度,并使注射目标更小成为可能。然而,图像引导注射依赖于集成轨道系统的利用,这使得这是一个严格且耗时的过程。本文介绍了一种独特、安全、高效的小鼠经皮胸腺内注射方法,消除了对轨道系统注射的依赖。该技术依赖于使用高分辨率微超声单元对小鼠胸腺进行无创成像。使用徒手技术,放射科医生可以在超声指导下将针尖直接放入小鼠胸腺中。在成像前清洁和麻醉小鼠。对于擅长超声引导程序的经验丰富的放射科医生来说,所述技术的学习期很短,通常在一个会话内。该方法对小鼠的发病率和死亡率较低,并且比目前的经皮注射机械辅助技术快得多。它使研究者能够有效地对任何大小的胸腺(包括非常小的器官,如老年或免疫缺陷小鼠的胸腺)进行精确可靠的经皮注射,而对动物的压力最小。如果需要,该方法可以注射单个叶,并且由于该程序的省时性质,有助于大规模实验。

Introduction

胸腺在T细胞发育和免疫中起着至关重要的作用。T细胞缺乏症可由胸腺退化,遗传性疾病,感染和癌症治疗等因素引起,导致高死亡率和发病率12。小鼠模型在基础和转化免疫学研究中都是必不可少的,几十年来一直用于研究胸腺生物学和T细胞发育,以及为患有胸腺功能障碍和T细胞缺陷的患者开发治疗方法345

胸腺研究的核心部分是心腺内注射生物材料,如小鼠模型678910,1112中的细胞,基因或蛋白质。传统的胸腺内注射方法使用开胸术,然后在直接可视化下进行胸腔内注射或通过“盲”经皮注射到纵隔。手术方法会显著增加气胸风险等。此外,该手术期间升高的压力会导致免疫抑制,从而可能损害免疫学数据13。经验丰富的研究人员经过一些实践,可以执行盲注射技术,但这种方法不太准确,因此将实验对象限制在胸腺大的年轻小鼠身上。

超声引导的使用已被引入,作为传统胸腺内注射方法的精确和微创替代方案14。但是,当使用集成轨道系统而不是徒手技术时,此过程非常耗时。使用进样支架进行进样需要借助各种附件(如探头支架和支架、X、Y 和 Z 定位系统)对换能器进行仔细的成像优化和定位,以及熟练操作显微操作控制和导轨系统扩展。这里介绍了一种简单的替代技术,即超声引导胸腺注射,由放射科医生使用徒手方法15进行,这是上述方法的快速和准确的微创替代方案。重要的是,目前的方法可以使用任何高分辨率超声成像系统执行,而无需注射安装和集成导轨系统。它对于需要注射大量小鼠11的研究,涉及注射两个胸腺叶的实验,或用于在老年,辐照或免疫功能低下的小鼠中准确注射小胸腺12特别有用。

Protocol

所有程序均按照发现与创新中心的动物护理指南(IACUC协议290)进行。对于本研究,C57BL / 6小鼠(雌性,4-6周龄),C57BL / 6小鼠(雌性,6个月大),J:NU雌性小鼠,NOD scid γ(NSG)雌性小鼠和B6;分别以CAG-luc、-GFP小鼠为幼鼠模型、老年小鼠模型、无胸腺裸体模型、免疫缺陷模型和生物发光细胞源。小鼠是从商业来源获得的(见 材料表)。这个过程通常需要两个人(一个在进行注射时保…

Representative Results

该技术的成功实施依赖于要遵循的几个关键步骤。首先,必须确保胸腺本身的可靠识别。在年轻小鼠中,由于腺体的尺寸很大,这很简单(图3A)。在老年小鼠或免疫缺陷小鼠中,它可能更具挑战性;但是,使用现代超声设备仍然非常可行(图3B,C)。其次,设置针头轨迹至关重要,以便在针尖穿过胸壁层并进入胸腺的过程中连续可视化。?…

Discussion

超声引导徒手注射是一种高度准确的技术,以高效和无菌的方式将研究材料输送到胸腺。在注射部位对皮肤进行初始灭菌后,由于使用了无菌手套、无菌超声探头盖和无菌超声凝胶,因此在手术过程中保持无菌。与盲经皮入路1017或依靠手术切口直接观察胸腺18,19(这是小鼠胸腺内注射的常用方法)相比使用徒手…

Disclosures

The authors have nothing to disclose.

Acknowledgements

我们要感谢Raymond H. Thornton在这项技术上的深刻而全面的早期工作。这项研究由美国国家癌症研究所(NCI 1R37CA250661-01A1),儿童白血病研究协会,哈肯萨克子午线医学院和HUMC基金会/解决儿童癌症资助。

Materials

Aquasonic 100 Ultrasound Gel Parker Laboratories (Fairfield, NJ, USA) 01-01 Sterile Ultrasound Transmission Gel
B6;CAG-luc, -GFP mouse The Jackson Laboratory (Bar Harbor, ME, USA) 025854 Bioluminescence cell source
BD Insulin Syringes with needle Becton Dickinson (Franklin Lakes, NJ, USA) 328431 Ultra-fine needle – 12.7 mm, 30 G
C57BL/6 mouse – aged The Jackson Laboratory (Bar Harbor, ME, USA) 000664 age 6 months old; aged model
C57BL/6 mouse – young The Jackson Laboratory (Bar Harbor, ME, USA) 000664 age 4-6 weeks; young model
Chloraprep One-step 0.67 mL CareFusion (El Paso, TX, USA) 260449 chlorhexidine gluconate applicator
Curity Cotton Tipped Applicator Cardinal Health (Dublin, OH, USA) A5000-2 Sterile, 6"
D-Luciferin Gold Biotechnology (St Louis, MO, USA) LUCK-1G
Isoflurane Henry Schein (Melville, NY, USA) 1182097
IVIS Lumina X5 PerkinElmer (Melville, NY, USA) n/a In vivo bioluminescence imaging system
J:NU mouse The Jackson Laboratory (Bar Harbor, ME, USA) 007850 Athymic nude model
Kendall Hypoallergenic Paper Tape Cardinal Health (Dublin, OH, USA) 1914C
Kimtech Surgical Nitrile Gloves Kimberly-Clark Professional (Irving, TX, USA) 56892 Sterile Gloves
Nair Hair Remover Lotion Church and Dwight (Trenton, NJ, USA) n/a Depilatory agent
NOD scid gamma (NSG) mouse The Jackson Laboratory (Bar Harbor, ME, USA) 005557 Immunodeficient model
Phosphate-Buffered Saline (PBS), 1x Corning (Corning, NY, USA) 21-040-CV
Puralube Vet Ointment Med Vet International PH-PURALUBE-VET Eye ointment
Sheathes Sheathing Technologies (Morgan Hill, CA, USA) 10040 Sterile Ultrasound Probe Covers
Sure-Seal Induction Chamber Braintree Scientific (Braintree, MA, USA) EZ-17 85 Anesthesia induction chamber
Transducer MX550D FUJIFILM VisualSonics (Toronto, ON, Canada) n/a Vevo 3100 imaging probe (25-55 MHz, Centre Transmit: 40 MHz)
Trypan Blue, 0.4% solution in PBS MP Biomedicals (Solon, OH, USA) 91691049
Vevo 3100 Imaging System FUJIFILM VisualSonics (Toronto, ON, Canada) n/a Ultrasound imaging system
Vevo 3100 Lab Software FUJIFILM VisualSonics (Toronto, ON, Canada) n/a Version 3.2.7 for imaging and analysis
Vevo Compact Dual Anesthesia System FUJIFILM VisualSonics (Toronto, ON, Canada) n/a Tabletop isoflurane-based anesthesia unit
Vevo Imaging Station FUJIFILM VisualSonics (Toronto, ON, Canada) n/a Procedural platform

References

  1. Chinn, I. K., Blackburn, C. C., Manley, N. R., Sempowski, G. D. Changes in primary lymphoid organs with aging. Seminars in Immunology. 24 (5), 309-320 (2012).
  2. Gruver, A. L., Sempowski, G. D. Cytokines, leptin, and stress-induced thymic atrophy. Journal of Leukocyte Biology. 84 (4), 915-923 (2008).
  3. Masopust, D., Sivula, C. P., Jameson, S. C. Of mice, dirty mice, and men: Using mice to understand human immunology. Journal of Immunology. 199 (2), 383-388 (2017).
  4. Mukherjee, P., Roy, S., Ghosh, D., Nandi, S. K. Role of animal models in biomedical research: a review. Laboratory Animals Research. 38 (1), 18 (2022).
  5. McCaughtry, T. M., Hogquist, K. A. Central tolerance: What have we learned from mice. Seminars in Immunopathology. 30 (4), 399-409 (2008).
  6. Zlotoff, D. A., et al. CCR7 and CCR9 together recruit hematopoietic progenitors to the adult thymus. Blood. 115 (10), 1897-1905 (2010).
  7. Vukmanovic, S., Grandea, A. G., Faas, S. J., Knowles, B. B., Bevan, M. J. Positive selection of T-lymphocytes induced by intrathymic injection of a thymic epithelial cell line. Nature. 359 (6397), 729-732 (1992).
  8. Schwarz, B. A., Bhandoola, A. Circulating hematopoietic progenitors with T lineage potential. Nature Immunology. 5 (9), 953-960 (2004).
  9. Marodon, G., et al. Induction of antigen-specific tolerance by intrathymic injection of lentiviral vectors. Blood. 108 (9), 2972-2978 (2006).
  10. Adjali, O., et al. In vivo correction of ZAP-70 immunodeficiency by intrathymic gene transfer. Journal of Clinical Investigation. 115 (8), 2287-2295 (2005).
  11. Tuckett, A. Z., et al. Image-guided intrathymic injection of multipotent stem cells supports life-long T cell immunity and facilitates targeted immunotherapy. Blood. 123 (18), 2797-2805 (2014).
  12. Tuckett, A. Z., Thornton, R. H., O’Reilly, R. J., vanden Brink, M. R. M., Zakrzewski, J. L. Intrathymic injection of hematopoietic progenitor cells establishes functional T cell development in a mouse model of severe combined immunodeficiency. Journal of Hematology & Oncology. 10 (1), 109 (2017).
  13. Hogan, B. V., Peter, M. B., Shenoy, H. G., Horgan, K., Hughes, T. A. Surgery induced immunosuppression. Surgeon. 9 (1), 38-43 (2011).
  14. Blair-Handon, R., Mueller, K., Hoogstraten-Miller, S. An alternative method for intrathymic injections in mice. Laboratory Animals. 39 (8), 248-252 (2010).
  15. Tuckett, A. Z., Zakrzewski, J. L., Li, D., vanden Brink, M. R., Thornton, R. H. Free-hand ultrasound guidance permits safe and efficient minimally invasive intrathymic injections in both young and aged mice. Ultrasound in Medicine and Biology. 41 (4), 1105-1111 (2015).
  16. Küker, S., et al. The value of necropsy reports for animal health surveillance. BMC Veterinary Research. 14 (1), 191 (2018).
  17. Sinclair, C., Bains, I., Yates, A. J., Seddon, B. Asymmetric thymocyte death underlies the CD4:CD8 T-cell ratio in the adaptive immune system. Proceedings of the National Academy of Sciences of the United States of America. 110 (31), 2905-2914 (2013).
  18. Manna, S., Bhandoola, A. Intrathymic injection. Methods in Molecular Biology. 1323, 203-209 (2016).
  19. de la Cueva, T., Naranjo, A., de la Cueva, E., Rubio, D. Refinement of intrathymic injection in mice. Laboratory Animals. 36 (5), 27-32 (2007).
check_url/64309?article_type=t&slug=a-minimally-invasive-accurate-efficient-technique-for-intrathymic

Play Video

Cite This Article
McGuire, M. T., Tuckett, A. Z., Myint, F., Zakrzewski, J. L. A Minimally Invasive, Accurate, and Efficient Technique for Intrathymic Injection in Mice. J. Vis. Exp. (186), e64309, doi:10.3791/64309 (2022).

View Video