Summary

人体血液,脑脊液屏障的脉络丛上皮基于Cell的产品型号从基底外侧面研究细菌感染

Published: May 06, 2016
doi:

Summary

The epithelial cells of the choroid plexus (CP) form the blood-cerebrospinal fluid barrier (BCSFB). An in vitro model of the BCSFB employs human choroid plexus papilloma (HIBCPP) cells. This article describes culturing and basolateral infection of HIBCPP cells using a cell culture filter insert system.

Abstract

The epithelial cells of the choroid plexus (CP), located in the ventricular system of the brain, form the blood-cerebrospinal fluid barrier (BCSFB). The BCSFB functions in separating the cerebrospinal fluid (CSF) from the blood and restricting the molecular exchange to a minimum extent. An in vitro model of the BCSFB is based on cells derived from a human choroid plexus papilloma (HIBCPP). HIBCPP cells display typical barrier functions including formation of tight junctions (TJs), development of a transepithelial electrical resistance (TEER), as well as minor permeabilities for macromolecules. There are several pathogens that can enter the central nervous system (CNS) via the BCSFB and subsequently cause severe disease like meningitis. One of these pathogens is Neisseria meningitidis (N. meningitidis), a human-specific bacterium. Employing the HIBCPP cells in an inverted cell culture filter insert system enables to study interactions of pathogens with cells of the BCSFB from the basolateral cell side, which is relevant in vivo. In this article, we describe seeding and culturing of HIBCPP cells on cell culture inserts. Further, infection of the cells with N. meningitidis along with analysis of invaded and adhered bacteria via double immunofluorescence is demonstrated. As the cells of the CP are also involved in other diseases, including neurodegenerative disorders like Alzheimer`s disease and Multiple Sclerosis, as well as during the brain metastasis of tumor cells, the model system can also be applied in other fields of research. It provides the potential to decipher molecular mechanisms and to identify novel therapeutic targets.

Introduction

血-脑脊髓液屏障(BCSFB)是血液和脑1之间三个屏障站点之一。其形态相关成分是脉络丛(CP)2,3-上皮细胞,内皮上皮回旋,这强烈血管和位于脑的脑室。将CP用来产生脑脊液(CSF),以及后者从血液中分离出来。为了实现屏障功能,在CP的上皮细胞显示出低的吞饮活性,表达特定转运,并且通过紧密连接(紧密连接)2,3-的连续网络密集连接。

人类脉络丛乳头状瘤(HIBCPP)细胞,从日本女子4的恶性脉络丛乳头状瘤衍生的,用于构建 BCSFB的体外模型的功能。 HIBCPP细胞显示一对夫妇的功能BCSFB的特点,为TJ形成股线,可以判断为跨上皮电阻(TEER)高跨上皮膜电位的发展,以及对大分子次要渗透率。此外,HIBCPP细胞表达的特点转运,这可能会起到调节离子微环境,并显示心尖/基底极性5,6,7。

该BCSFB已显示作为一个条目的网站的病原体(细菌,病毒和真菌)进入中枢神经系统(CNS)8。病原体,包括脑膜炎奈瑟氏球菌脑膜炎奈瑟氏球菌 ),一种革兰氏阴性细菌,入侵能引起严重的疾病如脑膜炎。 证据表明,它克服了CP的保护上皮屏障是由组织病理学观察患者支持与脑膜炎球菌性疾病表现出增加的血管和CP上皮细胞9,10-脑膜炎球菌的量。要进入宿主细胞巴cteria经常挟持内吞机制,其介导或由位于宿主细胞特异性表面受体触发。由于具有这些受体的病原体的相互作用可以是物种特异性11,动物模型只能协商,以一个受限制的程度。该HIBCPP细胞系提供了机会,研究入侵过程中,以及在人体模型系统的分子机制。采用细胞培养插入使我们能够分析病原体相互作用与宿主细胞从两个不同的细胞两侧。许多细菌,包括N。脑膜炎 ,强烈受重力的期间感染测定法的影响。对于与检测期间HIBCPP细胞病原体最佳交互,该细菌最初添加到细胞培养滤芯系统的上隔室。到从心尖或基底细胞侧,分别在体外系统的两种变化已经埃斯塔使感染blished:在标准系统HIBCPP细胞接种到过滤器插入件的上部隔室,模仿情况时微生物位于CSF的侧,并获得与所述细胞( 图1A,C)的顶面接触。与此相反,使用HIBCPP细胞在倒置的细胞培养滤芯系统反映当细菌进入血流的条件。微生物传播在从基底外侧侧( 图1B,D)的血液和遭遇的CP上皮细胞。值得注意的是,在该模型系统,已经表明,细菌侵入HIBCPP细胞极性的方式专门从基底细胞侧5,7。

随后向CP的感染,所述入侵病原体可通过结扎先天免疫系统对模式识别受体(的PRRs)识别。蓝耳的良好描述成员属于Toll样受体(TLR)家族。 Toll样受体能斌d,来感染性微生物的特性的结构,其被称为病原体相关分子模式(PAMP)。受体的结扎导致触发的细胞因子和趋化因子12,其反过来横跨BCSFB 13,14刺激免疫细胞的轮回的表达宿主细胞的活化信号级联。它已经显示HIBCPP细胞表达在mRNA水平数的TLR和感染N.脑膜炎导致多种细胞因子和趋化因子,包括CXCL1-3,IL6,IL8和TNFα15,16的分泌。

在这里,我们描述了一个模仿BCSFB倒置细胞培养插管系统种植和人细胞系HIBCPP的感染。此模型系统使得来研究与体内的相关基底细胞侧以及随后的细胞反应的病原体的相互作用。

Protocol

1.准备播种HIBCPP细胞细胞培养滤芯在倒立模型系统补充有5微克/毫升胰岛素预暖的DMEM / F12(HAM),100U / ml青霉素,100微克/毫升链霉素和10%胎牛血清(FCS)。 使用无菌镊子放置0.33平方厘米的生长区域的细胞培养滤芯为3微米的孔尺寸倒置放入一个12孔板( 图1E)。 填充介质进入细胞培养滤芯的下部隔室(约3毫升)和100微升在过滤器插入件的顶端。淹没板以及与介…

Representative Results

在这里,我们描述了一个倒置的细胞培养插管系统培养和HIBCPP细胞的感染。此模型使我们能够研究入侵机制和潜在的分子信号传导通路从基底细胞侧,再现细菌传播并且经由血液流进入上皮细胞( 图1)的生理状况。 该HIBCPP细胞显示一定的屏障功能,这使他们能够限制分子交换到最低水平。这是通过粘附连接(AJ?…

Discussion

CP的上皮细胞形成分隔从血液2,3脑脊液的BCSFB。我们最近成立了HIBCPP细胞系作为BCSFB的功能人体模型。细胞显示在体外 BCSFB的重要屏障功能,包括一个高的膜电位的发展,一个低渗透性的大分子,以及紧密连接5的连续股线的存在。的TJ蛋白向细胞的顶/底外侧极性。极性是表面受体的定向定位特定的转运蛋白高的重要性,以及。我们已经证明了受体ECAD和Met以及ATP结合盒的部件…

Declarações

The authors have nothing to disclose.

Acknowledgements

The authors would like to thank Prof. Hartwig Wolburg for performing the electron microscopy.

Materials

0.25% Trypsin-EDTA Gibco 25200-056
4´,6 diamidino-2-phenylindole (DAPI) Life Technologies D1306
12-well plates Starlab CC7682-7512
24-well plates Starlab CC7682-7524
Anti Neisseria meningitidis α-OMP This antibody was a gift from Drs. H. Claus and U. Vogel (University of Würzburg, Germany)
Alexa Fluor 488 (chicken anti rabbit) Invitrogen A21441
Alexa Fluor 594 (chicken anti rabbit) Invitrogen A21442
Alexa Fluor 660 Phalloidin Invitrogen A22285
Bovine serum albumine (BSA) Calbiochem 12659
Chocolate agar plates Biomerieux 43109
Cytochalasin D Sigma C8273
DMEM/F12 + L-Glut + 15 mM HEPES Gibco 31330-095
DMEM/F12 + L-Glut + 15 mM HEPES w/o Phenolred Gibco 11039-047
Dimethyl sulfoxide Sigma D2650
Fetal calf serum (FCS) Life Technologies 10270106
FITC-Inulin Sigma F3272
Insulin Sigma 19278
MgCl2 Sigma 2393
NaHCO3 Sigma 55761
PBS + Mg +Ca Gibco 14040-174
Penicillin/Streptomycin MP Biomedicals 1670049
Polyvitex Biomerieux 55651
Proteose peptone BD 211684
Serum-free medium Gibco 10902-096
Thincert cell culture inserts for 24-well plates, pore size 3 µm Greiner 662630
Tissue culture flask 75 cm² red cap sterile Greiner 658175
Triton X-100 Sigma T8787
Volt-Ohm Meter Millicell-ERS2 with MERSSTX01 electrode Millipore MERSSTX00

Referências

  1. Abott, N. J., Patabendige, A. A. K., Dolman, D. E. M., Yusof, S. R., Begley, D. J. Structure and function of the blood-brain barrier. Neurobiol Dis. 37, 13-25 (2009).
  2. Wolburg, H., Paulus, W. Choroid plexus: biology and pathology. Acta Neuropathol. 119, 75-88 (2010).
  3. Engelhardt, B., Sorokin, L. The blood-brain and the blood-cerebrospinal fluid barriers: function and dysfunction. Semin Imunopathol. 31, 497-511 (2009).
  4. Ishiwata, I., Ishiwata, C., Ishiwata, E., Sato, Y., Kiguchi, K., Tachibana, T., et al. Establishment and characterization of a human malignant choroid plexus papilloma cell line (HIBCPP). Hum Cell. 18, 67-72 (2005).
  5. Schwerk, C., Papandreou, T., Schuhmann, D., Nickol, L., Borkowski, J., Steinmann, U., et al. Polar invasion and translocation of Neisseria meningitidis and Streptococcus suis in anovel human model of the blood-cerebrospinal fluid barrier. PloS One. 7, e30069 (2012).
  6. Bernd, A., Ott, M., Ishikawa, H., Schroten, H., Schwerk, C., Fricker, G. Characterization of efflux transport proteins of the human choroid plecus papilloma cell line HIBCPP, a functional in vitro model of the blood-cerebrospinal fluid barrier. Pharm Res. , (2014).
  7. Gründler, T., Quednau, N., Stump, C., Orian-Rousseau, V., Ishikawa, H., Wolburg, H., et al. The surface proteins InlA and InlB are interdependently required for polar basolateral invasion by Listeria monocytogenes in a human model of the blood-cerebrospinal fluid barrier. Microbes Infect. 15, 291-301 (2013).
  8. Schwerk, C., Tenenbaum, T., Kwang, S. K., Schroten, H. The choroid plexus – a multi-role player during infectious diseases of the CNS. Front Cell Neurosci. 9, 80 (2015).
  9. Pron, B., Taha, M. K., Rambaud, C., Fournet, J. C., Pattey, N., Monnet, J. P., et al. Interaction of Neisseria meningtidis with the components of the blood-brain barrier correlates with increased expression of PilC. J Infect Dis. 176, 1285-1292 (1997).
  10. Guarner, J., Greer, P. W., Whitney, A., Shieh, W. J., Fischer, M., White, E. H., Carlone, G. M., et al. Pathogenesis and diagnosis of human meningococcal disease using immunohistochemical and PCR assays assays. Am J Clin Pathol. 122, 754-764 (2004).
  11. Pizarro-Cerda, J., Kuhbacher, A., Cossart, P. Entry of Listeria monocytogenes in mammalian epithelial cells: an updated view. Cold Spring Harb Perspect Med. 2, (2012).
  12. Beutler, B. Microbe sensing, positive feedback loops and the pathogenesis of inflammatory diseases. Immunol. Rev. 227, 248-263 (2009).
  13. Wilson, E. H., Weninger, W., Hunter, C. A. Trafficking of immune cells in the central nervous system. J Clin Invest. 120, 1368-1379 (2010).
  14. Meeker, R. B., Williams, K., Killebrew, D. A., Hudson, L. C. Cell trafficking through the choroid plexus. Cell Adh Migr. 6, 390-396 (2012).
  15. Borkowski, J., Li, L., Steinmann, U., Quednau, N., Stump-Guthier, C., Weiss, C., et al. Neisseria meningitidis elicits a pro-inflammatory response involving I kappa B zeta in a human blood-cerebrospinal fluid barrier model. J Neuroinflammation. 11, 163 (2014).
  16. Steinmann, U., Borkowski, J., Wolburg, H., Schroppel, B., Findeisen, P., Weiss, C., et al. Transmigration of polymorphnuclear neutrophils and monocytes through the human blood-cerebrospinal fluid barrier after bacterial infection in vitro. J Neuroinflammation. 10, 30 (2013).
  17. McGuiness, B. T., Clarke, I. N., Lambden, P. R., Barlow, A. K., Poolman, J. T., Heckels, J. E. Point mutation in meningococcal por A gene associated with increased endemic disease. Lancet. 337, 514-517 (1991).
  18. Ram, S., Cox, A. D., Wright, J. C., Vogel, U., Getzlaff, S., Boden, R. Neisserial lipopolysaccharide is a target for complement component C4b. inner core phosphoethanolamine residues define C4b linkage specificity. J Biol Chem. 278, 50853-50862 (2003).
  19. Claus, H., Maiden, M. C., Maag, R., Frosch, M., Vogel, U. Many carried meningococci lack the genes required for capsule synthesis and transport. Microbiology. 148, 1813-1819 (2002).
  20. Claus, H., Maiden, M. C., Wilson, D. J., Mccarthy, N. D., Jolley, K. A., Urwin, R., et al. Genetic analysis of meningococci carried by children and young adults. J Infect Dis. 191, 1263-1271 (2005).
  21. Tenenbaum, T., Papandreou, T., Gellrich, D., Friedrichs, U., Seibt, A., Adam, R., et al. Polar bacterial invasion and translocation of Streptococcus suis across the blood-cerebrospinal fluid barrier in vitro. Cell Microbiol. 11, 323-336 (2009).
  22. Laflamme, N., Echchannaoui, H., Landmann, R., Rivest, S. Cooperation between toll-like receptor 2 and 4 in the brain of mice challenged with cell wall components derived from gram-negative and gram-positive bacteria. Eur J Immunol. 33, 1127-1138 (2003).
  23. Laflamme, S., Rivest, S. Toll-like receptor 4: the missing link of the cerebral innate immune response triggered by circulating gram-negative bacterial cell wall components. FASEB J. 15, 155-163 (2001).
  24. Zughaier, S. M. Neisseria meningitidis capsular polysaccharides indice inflammatory responses via TLR2 and TLR4-MD-2. J Leukoc Biol. 89, 469-480 (2011).
  25. Yamamoto, M., Yamazaki, S., Uematsu, S., Sato, S., Hemmi, M., Hoshino, K., et al. Regulation of Toll/IL-1-receptor -mediated gene expression by the inducible nuclear protein IkappaBzeta. Nature. 430, 218-222 (2004).
  26. Lorenz, J., Zahlten, J., Pollok, I., Lippmann, J., Scharf, S., N’Guessan, P. D., et al. Legionella pheumophila-induced IkappaBzeta-dependent expression of interleukin-6 in lung epithelium. Eur Respir J. 37, 648-657 (2011).
  27. Jaerve, A., Muller, H. W. Chemokines in CNS injury and repair. Cell Tissue Res. 349, 229-248 (2012).
  28. Schneider, H., Weber, C. E., Schoeller, J., Steinmann, U., Borkowski, J., Ishikawa, H., et al. Chemotaxis of T-cells after infection of human choroid plexus papilloma cells with Echovirus 30 in an in vitro model of the blood-cerebrospinal fluid barrier. Virus Res. 170, 66-74 (2012).
  29. Chodobski, A., Szmydynger-Chodobska, J. Choroid plexus: Target for polypeptides and site of their synthesis. Microsc. Res. Tech. 52, 65-82 (2001).
  30. Dickson, P. W., Schreiber, G. High levels of messenger RNA for transthyretin (prealbumin) in human choroid plexus. Neurosci. Lett. 66, 311-315 (1986).
  31. Stylianopoulou, F., Herbert, J., Soares, M. B., Efstratiadis, A. Expression of the insulin-like growth factor II gene in the choroid plexus and the leptomeninges of the adult rat central nervous system. Proc Natl Acad Sci USA. 85, 141-145 (1988).
  32. Lim, L., Zhou, H., Costa, R. H. The winged helix transcription factor HFH-4 is expressed during choroid plexus epithelial development in the mouse embryo. Proc. Natl Acad. Sci. USA. 94, 3094-3099 (1997).
  33. Vandenhaute, E., Stump-Guthier, C., Lasierra Losada, M., Tenenbaum, T., Rudolph, H., Ishikawa, H., et al. The choroid plexus may be an underestimated site of tumor invasion to the brain: an in vitro study using neuroblastoma cell lines. Cancer Cell Int. , 15-102 (2015).
check_url/pt/54061?article_type=t

Play Video

Citar este artigo
Dinner, S., Borkowski, J., Stump-Guthier, C., Ishikawa, H., Tenenbaum, T., Schroten, H., Schwerk, C. A Choroid Plexus Epithelial Cell-based Model of the Human Blood-Cerebrospinal Fluid Barrier to Study Bacterial Infection from the Basolateral Side. J. Vis. Exp. (111), e54061, doi:10.3791/54061 (2016).

View Video