Summary

单核RNA-seq和ATAC-seq的新鲜冷冻脑肿瘤的核隔离

Published: August 25, 2020
doi:

Summary

肿瘤内异质性是肿瘤的内在特征,包括胶质瘤。我们开发了一个简单而高效的协议,利用缓冲和梯度离心的组合,将单核从新鲜冷冻胶质瘤组织中分离出来,用于单核RNA和ATAC测序研究。

Abstract

成人扩散胶质瘤表现出肿瘤间和肿瘤内异质性。直到最近,大多数大规模的分子分析工作都集中在导致脑肿瘤分子分类的批量方法上。在过去五年中,单细胞测序方法突出了胶质瘤的几个重要特征。这些研究大多利用新鲜的脑肿瘤标本,利用流细胞学或抗体分离方法分离单细胞。今后,使用来自生物库的新鲜冷冻组织样本将为单细胞应用提供更大的灵活性。此外,随着单细胞场的进步,下一个挑战将是从单个细胞或相同的样本制备中生成多细胞数据,以更好地解开肿瘤的复杂性。因此,简单而灵活的协议,允许数据生成的各种方法,如单核RNA测序(snRNA-seq)和单核检测的转位酶-可访问色度素与高通量测序(snATAC-seq)将是重要的领域。

单细胞领域的最新进展,加上10倍基因组学平台等可访问的微流体仪器,促进了单细胞在研究实验室中的应用。为了研究脑肿瘤异质性,我们开发了一个增强的方案,用于将单核从新鲜冷冻胶质瘤中分离出来。此协议合并了现有的单细胞协议,并结合了同质化步骤,然后是过滤和缓冲介导梯度离心。生成的样本是纯单核悬浮,可用于从相同的核制剂生成单核基因表达和色度素可访问数据。

Introduction

扩散性低级胶质瘤(LGG)是成人中最常见的原发性脑肿瘤,是脑半球中经常出现的渗透性肿瘤。LGG表现出肿瘤间和肿瘤内异质性,这不仅是由肿瘤人群驱动的,而且是由复杂参与肿瘤发育和进展的非恶性细胞驱动的,1、2、3、4、5。

在过去十年中,在胶质瘤领域收集的基因组数据大量增加。这些数据主要来自散装肿瘤测序研究,对分子定性以及目前脑肿瘤5、6、7、8、9、10、11的分类做出了巨大贡献。然而,尽管这些研究揭示了与胶质瘤相关的广泛的分子景观,但在治疗干预方面仍然缺乏进展,令人失望。脑肿瘤治疗耐药性的障碍之一是肿瘤内异质性。为了解决这个问题,各种研究一直集中在基因组学,转录学,蛋白体学和表观遗传异质性存在于肿瘤的单细胞水平12,13,14,15,16,17。

虽然在过去几年中,单细胞领域取得了显著的技术进步,但主要限制因素之一是提供分离细胞和进行这些实验所需的新鲜标本。为了克服这一限制,已经进行了几次成功的尝试,例如从冷冻组织中,使用核而不是细胞18,19进行snRNA-seq和snATAC-seq。这些方法大多依赖于荧光激活的细胞分拣 (FACS) 或过滤策略。单细胞和单核方法都有其优点和缺点。单细胞方法保持线粒体记录,虽然可能信息丰富,但也可能减少转录体覆盖,因为他们的高丰度。单核分离方法消除了线粒体分数的高百分比,从而使核记录20的更深入的覆盖。

近年来,有各种商业平台被用来检测单细胞基因组学数据,包括RNA-seq和ATAC-seq。其中最突出的平台是10倍基因组铬平台,用于单细胞基因表达和单细胞ATAC分析。由于该平台在微流体室的帮助下工作,任何碎屑或聚合物都可能堵塞系统,导致数据、试剂和有价值的临床样本丢失。因此,单细胞研究的成功在很大程度上取决于单细胞/细胞核的准确分离。

我们将在这里展示的协议是DroNc-seq和Omni-ATAC-seq协议的稍微修改的组合,并利用类似的方法进行最近的研究,利用snRNA-seq来了解人脑中的神经紊乱和神经元细胞类型18,19,21,22,23,24。该协议采用冷冻样品的酶/机械分离组合,然后进行过滤和梯度离心,并允许从新鲜冷冻胶质瘤组织快速准确地分离单核。我们已经成功地利用这个协议从脑肿瘤标本的相同核制剂中生成snRNA-seq和snATAC-seq数据。

Protocol

新鲜冷冻胶质瘤样本来自德国海德堡国家肿瘤疾病中心(NCT)组织库。海德堡医学院机构审查委员会批准了患者材料的使用,并获得了研究中包括的所有患者的知情同意。 1. 实验准备 在冰上或在 4 °C 下执行所有步骤。 预冷管、盘子、剃须刀刀片、杜恩克和害虫至 4 °C。 提前准备所有缓冲。这些缓冲器在室温下是稳定的。建议进行无菌过滤,尤其是蔗?…

Representative Results

单核基因组学是一个不断发展的领域,数据和协议有限。影响单核检测结果的一个关键因素是纯核和完整核的分离。我们结合了两个已发布的协议(DroNc-seq 和 Omni-ATAC-seq 协议),在相对较短的时间内将高质量和纯核从新鲜冷冻胶质瘤组织块中分离出来,从而保持成绩单的稳定性(图 1)。 使用各种过滤步骤以及使用碘糖醇/蔗糖梯度的梯度离心,可以隔?…

Discussion

肿瘤内异质性领域正处于一个激动人心的阶段,正在开发新的分析和平台来挑战和扩展现有的知识。肿瘤内异质性是导致胶质瘤28中疾病进展和抵抗当前治疗方式的关键因素。最近关于脑肿瘤的研究集中在这一重要方面,使用单细胞转录和表观基因组测定,以更好地描述细胞异质性在同一肿瘤29,30,31,32。<s…

Declarações

The authors have nothing to disclose.

Acknowledgements

我们感谢德国癌症中心 (DKFZ) 的单细胞开放实验室 (scOpenLab) 的有益讨论。这项研究得到了德国癌症援助组织马克斯-埃德计划赠款编号70111964(S.T.)的支持。

Materials

2-Mercaptoethanol Sigma M6250
CaCl2 Sigma 21115-100ML
Dounce Homogenizer Active motif 40401
EDTA (0.5 M) Thermo Scientific R1021
Falcon 5 mL Round Bottom Polystyrene Test Tube Corning 352235
Iodixanol (aka Optiprep) Stem cell technologies 07820
MACs Smart Strainers (30 µm) Miltenyi Biotec 130-098-458
MACS SmartStrainers (100 µm) Miltenyi Biotec 130-098-463
Mg(Ac)2 Sigma 63052-100ML
NP-40 Abcam ab142227
Nuclei Isolation Kit: Nuclei EZ Prep Sigma NUC101-1KT
Phenylmethanesulfonyl fluoride (PMSF) Sigma P7626
Pre-Separation Filters (20 µm) Miltenyi Biotec 130-101-812
Safe lock tubes 1.5 mL Eppendorf 0030120086
Safe lock tubes 2.0 mL Eppendorf 0030120094
Single Cell ATAC 10x Genomics
Single Cell Gene Expression 10x Genomics
Sucrose Sigma S0389
Wide Bore pipette tips (1000 µL) Themo Fisher Scientific 2079GPK
Wide Bore pipette tips (200 µL) Themo Fisher Scientific 2069GPK

Referências

  1. Huse, J. T., Holland, E. C. Targeting brain cancer: advances in the molecular pathology of malignant glioma and medulloblastoma. Nature Reviews Cancer. 10 (5), 319-331 (2010).
  2. Kreso, A., Dick, J. E. Evolution of the cancer stem cell model. Cell Stem Cell. 14 (3), 275-291 (2014).
  3. Filbin, M. G., Suva, M. L. Gliomas Genomics and Epigenomics: Arriving at the Start and Knowing It for the First Time. Annual Review of Pathology. 11, 497-521 (2016).
  4. Ferris, S. P., Hofmann, J. W., Solomon, D. A., Perry, A. Characterization of gliomas: from morphology to molecules. Virchows Archive. 471 (2), 257-269 (2017).
  5. Louis, D. N., et al. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathologica. 131 (6), 803-820 (2016).
  6. Eckel-Passow, J. E., et al. Glioma Groups Based on 1p/19q, IDH, and TERT Promoter Mutations in Tumors. The New England Journal of Medicine. 372 (26), 2499-2508 (2015).
  7. Suzuki, H., et al. Mutational landscape and clonal architecture in grade II and III gliomas. Nature Genetics. 47 (5), 458-468 (2015).
  8. Cancer Genome Atlas Research. Comprehensive, Integrative Genomic Analysis of Diffuse Lower-Grade Gliomas. The New England Journal of Medicine. 372 (26), 2481-2498 (2015).
  9. Noushmehr, H., et al. Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell. 17 (5), 510-522 (2010).
  10. Yan, H., et al. IDH1 and IDH2 mutations in gliomas. The New England Journal of Medicine. 360 (8), 765-773 (2009).
  11. Yan, H., Bigner, D. D., Velculescu, V., Parsons, D. W. Mutant metabolic enzymes are at the origin of gliomas. Pesquisa do Câncer. 69 (24), 9157-9159 (2009).
  12. Gawad, C., Koh, W., Quake, S. R. Single-cell genome sequencing: current state of the science. Nature Reviews Genetics. 17 (3), 175-188 (2016).
  13. Tanay, A., Regev, A. Scaling single-cell genomics from phenomenology to mechanism. Nature. 541 (7637), 331-338 (2017).
  14. Wu, M., Singh, A. K. Microfluidic Flow Cytometry for Single-Cell Protein Analysis. Methods in Molecular Biology. 1346, 69-83 (2015).
  15. Schwartzman, O., Tanay, A. Single-cell epigenomics: techniques and emerging applications. Nature Reviews Genetics. 16 (12), 716-726 (2015).
  16. Macaulay, I. C., Ponting, C. P., Voet, T. Single-Cell Multiomics: Multiple Measurements from Single Cells. Trends in Genetics. 33 (2), 155-168 (2017).
  17. Buenrostro, J. D., et al. Single-cell chromatin accessibility reveals principles of regulatory variation. Nature. 523 (7561), 486-490 (2015).
  18. Habib, N., et al. Massively parallel single-nucleus RNA-seq with DroNc-seq. Nature Methods. 14 (10), 955-958 (2017).
  19. Corces, M. R., et al. An improved ATAC-seq protocol reduces background and enables interrogation of frozen tissues. Nature Methods. 14 (10), 959-962 (2017).
  20. Slyper, M., et al. A single-cell and single-nucleus RNA-Seq toolbox for fresh and frozen human tumors. Nature Medicine. 26 (5), 792-802 (2020).
  21. Mathys, H., et al. Single-cell transcriptomic analysis of Alzheimer’s disease. Nature. 570 (7761), 332-337 (2019).
  22. Krishnaswami, S. R., et al. Using single nuclei for RNA-seq to capture the transcriptome of postmortem neurons. Nature Protocols. 11 (3), 499-524 (2016).
  23. Al-Dalahmah, O., et al. Single-nucleus RNA-seq identifies Huntington disease astrocyte states. Acta Neuropathologica Communications. 8 (1), 19 (2020).
  24. Jakel, S., et al. Altered human oligodendrocyte heterogeneity in multiple sclerosis. Nature. 566 (7745), 543-547 (2019).
  25. Butler, A., Hoffman, P., Smibert, P., Papalexi, E., Satija, R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nature Biotechnology. , (2018).
  26. Lake, B. B., et al. Integrative single-cell analysis of transcriptional and epigenetic states in the human adult brain. Nature Biotechnology. 36 (1), 70-80 (2018).
  27. Stuart, T., et al. Comprehensive Integration of Single-Cell Data. Cell. 177 (7), 1888-1902 (2019).
  28. Bready, D., Placantonakis, D. G. Molecular Pathogenesis of Low-Grade Glioma. Neurosurgery Clinics of North America. 30 (1), 17-25 (2019).
  29. Venteicher, A. S., et al. Decoupling genetics, lineages, and microenvironment in IDH-mutant gliomas by single-cell RNA-seq. Science. 355 (6332), (2017).
  30. Tirosh, I., et al. Single-cell RNA-seq supports a developmental hierarchy in human oligodendroglioma. Nature. 539 (7628), 309-313 (2016).
  31. Weng, Q., et al. Single-Cell Transcriptomics Uncovers Glial Progenitor Diversity and Cell Fate Determinants during Development and Gliomagenesis. Cell Stem Cell. 24 (5), 707-723 (2019).
  32. Neftel, C., et al. An Integrative Model of Cellular States, Plasticity, and Genetics for Glioblastoma. Cell. 178 (4), 835-849 (2019).
  33. Al-Ali, R., et al. Single-nucleus chromatin accessibility reveals intratumoral epigenetic heterogeneity in IDH1 mutant gliomas. Acta Neuropathologica Communications. 7 (1), 201 (2019).

Play Video

Citar este artigo
Narayanan, A., Blanco-Carmona, E., Demirdizen, E., Sun, X., Herold-Mende, C., Schlesner, M., Turcan, S. Nuclei Isolation from Fresh Frozen Brain Tumors for Single-Nucleus RNA-seq and ATAC-seq. J. Vis. Exp. (162), e61542, doi:10.3791/61542 (2020).

View Video