Summary

从金属支架表面使用的腺病毒载体栓通过水解的交联剂血管基因转移

Published: August 12, 2014
doi:

Summary

These studies report on reversible attachment of adenoviral gene vectors to coatless metal surfaces of stents and model mesh disks. Sustained release of transduction-competent viral particles contingent upon hydrolysis of cross-linkers used for vector immobilization results in a durable site-specific transgene expression in vascular cells and in stented arteries.

Abstract

支架内再狭窄呈现的广泛使用,以重新建立血液穿过冠状动脉和外周动脉的极为狭窄段流基于支架的血管成形术的主要并发症。可调谐释放基因具有抗再狭窄活性可能存在另一种战略血管内支架,以目前使用的药物洗脱支架。为了达到临床平移,基因洗脱支架必须具有支架固定化基因载体释放和血管系统的位点特异性转导的可预测的动力学,同时避免通常与用于所述载体的物理截留在聚合物涂层相关联的严重的炎症反应。本文描述了一种腺病毒基因载体coatless束缚到基于所述腺病毒颗粒的可逆结合​​支架的详细方法,以聚烯丙胺二膦酸盐(PABT)经由水解的交联剂(HC)改性不锈钢表面。一个家庭的双官能团(胺和硫醇反应性)的HC与中链酯水解测距5-50天的平均吨被用于与所述支架连接的载体中。该载体的固定化过程典型地是在9小时,包括几个步骤:1)温育的金属样品在PABT(4小时)的水溶液; 2)脱保护以三(2 – 羧乙基)膦(20分钟)安装在PABT硫醇基; 3)膨胀的金属表面的巯基反应的能力通过使与聚乙烯亚胺衍生的吡啶基二硫(PDT)基团(2小时)的样品; 4)变换PDT基与硫醇与二硫苏糖醇(10分钟); 5)修改腺病毒与HC(1小时); 6)纯化修饰的腺病毒颗粒通过尺寸排阻柱色谱法(15分钟)和在硫醇化钢表面(1小时),巯基反应性的腺病毒颗粒7)固定。该技术具有超越支架宽的应用潜力,通过促进生物假体装置的表面工程通过基板介导的基因递送到细胞中的接口的植入外来物质,以提高其生物相容性。

Introduction

基因疗法作为治疗方法的有效性是通过基因治疗的载体1,2的差的定位能力受到阻碍。适当的定位结果中的转基因表达在目标位置的亚治疗水平的缺乏,导致载体对非靶器官3,包括那些负责安装针对两个矢量和编码的治疗产物4的免疫应答的广泛传播, 5。一电位是指,以抵消转导的滥交和促进目标是引入基因的载体在所需位置处在于,通过血液和淋巴排除其自由传播的形式。典型地,这样的努力依赖于局部注射的递送系统,包括混有纤维蛋白,胶原蛋白或透明质酸水凝胶基质6-10,其能够在注射部位短暂维持基因的载体通过物理截留第要么病毒或非病毒载体的时间在聚合网络。

用于局部基因治疗另一普遍接受的范例利用基因载体的固定化植入假体装置11,12的表面上。永久性医疗植入物(血管,支气管,泌尿系统和胃肠道支架,起搏器,人工关节,手术和妇科网 ),每年都用在数以千万计的患者13。虽然通常是有效的,这些设备很容易出现并发症,是由当前的医疗行为14-17控制不佳的。植入假体装置提出了一个独特的机会,作为代理平台局部基因治疗。从药物动力学观点来看,医疗植入物与基因载体的结果相对低的输入剂量植入物/组织界面上实现既高局部浓度基因载体和减缓兵卫的动力学的表面衍生ř消除从这个位置。至于长期居留的后果和增强摄取目标细胞群,固定化载体的最小基因载体的传播。因而不慎接种的非靶组织中被减少。

在植入生物材料的基因的载体(也称为基底介导的基因递送或固相的基因递送)的表面束缚已在细胞培养和动物实验使用实施两个特定(抗原-抗体18-20生物素蛋白-生物素21,22)和非特异性23-26(充电,范德华力)的相互作用。共价连接的载体,以植入装置的表面之前已被视为非功能由于与表面过于强键排除向量的内化通过靶细胞。最近已证明,这种限制可以通过使用作为四面体的使用自发水解的交联剂来克服所述腺病毒载体27,28的支架和壳体蛋白的经修饰的金属表面之间存。此外,该载体释放速率和在体外体内转基因表达的时间进程可以调制与使用可水解的交联剂呈现不同水解28的动力学。

本文件提供了腺病毒载体活化金属表面的可逆共价连接的详细协议,并引入了一个有用的实验装置来研究在体外随后传导事件在培养的平滑肌和内皮细胞和体内的支架成形术的大鼠颈动脉模型。

Protocol

1,准备Cy3标记的腺病毒为实验版 (; pH值9.3 CBB)在650微升的碳酸盐/碳酸氢盐缓冲液暂停2×10 12颗粒广告空 (约2×10 11感染单位)。 溶解的1瓶(0.2毫克)的胺反应性的荧光染料(Cy3标记(NHS)2)在1ml CBB的含量为0.2毫克/毫升的最终浓度。 加入100微升的染料溶液,以病毒悬浮液,涡旋5秒并保温1小时,在28℃振荡(100-200转)。 平衡用PBS 2…

Representative Results

矢量释放实验 腺病毒载体到植入物的表面,包括介入器械如血管内支架的束缚,近似向量到疾病部位,部分避免了缺乏矢量“物理定位。然而,为了能够实现通过靶组织的转导的治疗效果,所述载体必须释放从表面( 图2)。使用水解的交联剂是假设为允许通过该交联剂的水解介1)〜polybisphosphonate改性的有效附着载体,硫醇 – 安装金属植入物和2)?…

Discussion

所提出的协议描述了一种用于通过腺病毒载体的可逆附着取得到coatless不锈钢表面衬底介导的基因递送的操作方法。而开发出用于血管再狭窄的支架为基础的基因疗法的特定目的,该技术具有在生物材料,生物医学植入物和基因治疗等领域的更广泛的应用。

虽然提出的研究仅使用不锈钢作为一个典型的金属基板,PABT结合其他金属的合金,如钴/铬和镍钛合金具有相当的亲?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

The authors do not have competing financial interests to disclose.

Materials

316 stainless steel mesh disks Electon Microscopy Sciences E200-SS
Generic 304-grade stainless steel stents Laserage custom order
AdeGFP University of Pennsylvania Vector Core AD-5-PV0504
AdLuc University of Pennsylvania Vector Core AD-5-PV1028
AdEMPTY University of Pennsylvania Vector Core A858
Cy3(NHS)2 GE Healthcare PA23000
Sepharose 6B Sigma-Aldrich 6B100-500ML
UV 96-well plates Costar 3635
Fluorometry 96-well plates Costar 3915
Cell culture 96-well plates Falcon 353072
Tris(2-carboxyethyl)phosphine hydrochloride (TCEP ) Pierce Thermo Scientific 20490
dithiothreitol (DTT) Pierce Thermo Scientific 20290
sulfo-LC-SPDP Pierce Thermo Scientific 21650
Spectrophotometer Molecular Devices  SpectraMax 190
Spectrofluorometer Molecular Devices SpectraMax Gemini EM
Orbital shaker incubator VWR 1575R
Horizontal airflow oven Shel Lab 1350 FM
Centra-CL2 centrifuge  International Equipment Company 426
Digital vortex mixerer Fisher Thermo Scientific 02-215-370
Eclipse TE300 fluorescence microscope Nikon  TE300
DC 500 CCD camera Leica DC-500
7500 Real-Time PCR system Applied Biosystems not available
IVIS Spectrum bioluminescence station Perkins-Elmer not available
EDTA dipotassium salt Sigma-Aldrich ED2P
Bovine serum albumin fraction V (BSA) Fisher Thermo Scientific BP1600-100
Tween-20 Sigma-Aldrich P1379
Dumont forceps Fine Science Tools 11255-20
A10 cell line  ATCC CRL-1476
Bovine aortic endothelial cells Lonza BW-6002
Luciferin, potassium salt Gold Biotechnology LUCK-1Ge
Pluronic F-127 Sigma-Aldrich P2443-250G
PBS  without calcium and magnesium Gibco 14190-136
Fetal bovine serum Gemini Bio-Products 100-106
Penicillin/Streptomycin solution Gibco 11540-122
DMEM, high glucose Corning cellgro 10-013-CV
0.25% Trypsin/EDTA Gibco 25200-056
QIAamp DNA micro kit Qiagen 56304
Power Sybr Green PCR Master Mix Applied Biosystems 4367659
MicroAmp Optical 96-well Reaction Plate Applied Biosystems N8010560
MicroAmp Optical Adhesive Film Applied Biosystems 4360954
Cephazolin  Apotex not available
Loxicom (Meloxicam) Norbrook not available
Heparin sodium APP Pharmaceuticals not available
Ketavet (Ketamine) VEDCO not available
Anased (Xylazine)  Lloid not available
Forane (Isoflurane)  Baxter not available
Curved Moria iris forceps Fine Science tools 11370-31
 Curved extra-fine Graefe forceps Fine Science Tools 11152-10
Dumont #5 forceps Fine Science Tools 11252-20
Vannas spring scissors Fine Science Tools 15018-10
Fine scissors – ToughCut Fine Science Tools 14058-09
Surgical scissors Fine Science Tools 14101-14
Vicryl suture (5-0) Ethicon J385
Suture thread (4/0 silk)  Fine Science Tools 18020-40
Michel suture clips Fine Science Tools 12040-02
Wound dilator (Lancaster eye specula) KLS Martin 34-149-07
Hot bead sterilizer Fine Science Tools 18000-45
Michel suture clip applicator Fine Science Tools 112028-12
Insyte Autoguard 24G IV catheter Beckton-Dickinson 381412
2F Fogarty catheter Edwards Lifesciences 120602F
Teflon tubing Vention 041100BST
PTA catheter NuMed custom order
Gauze pads Kendall Healthcare 9024
Cotton applicators Solon Manufacturing WOD1003
Saline Baxter 281321
10 ml syringe (Luer-Lok) Beckton-Dickinson 309604
1 ml syringe (Luer-Lok) Beckton-Dickinson 309628
Clippers with #40 blade Oster  78005-314
Transpore surgical tape 3M MM 15271
Puralube vet ointment Pharmaderm not available

References

  1. Boeckle, S., Wagner, E. Optimizing targeted gene delivery: chemical modification of viral vectors and synthesis of artificial virus vector systems. AAPS J. 8, E731-E742 (2006).
  2. Waehler, R., Russell, S. J., Curiel, D. T. Engineering targeted viral vectors for gene therapy. Nat Rev Genet. 8, 573-587 (2007).
  3. Campos, S. K., Barry, M. A. Current advances and future challenges in Adenoviral vector biology and targeting. Curr Gene Ther. 7, 189-204 (2007).
  4. Bangari, D. S., Mittal, S. K. Current strategies and future directions for eluding adenoviral vector immunity. Curr Gene Ther. 6, 215-226 (2006).
  5. Barry, M. A., et al. Systemic delivery of therapeutic viruses. Curr Opin Mol Ther. 11, 411-420 (2009).
  6. De Laporte, L., Shea, L. D. Matrices and scaffolds for DNA delivery in tissue engineering. Adv Drug Deliv Rev. 59, 292-307 (2007).
  7. Gustafson, J. A., Price, R. A., Greish, K., Cappello, J., Ghandehari, H. Silk-elastin-like hydrogel improves the safety of adenovirus-mediated gene-directed enzyme-prodrug therapy. Mol Pharm. 7, 1050-1056 (2010).
  8. Kidd, M. E., Shin, S., Shea, L. D. Fibrin hydrogels for lentiviral gene delivery in vitro and in vivo. J Control Release. 157, 80-85 (2012).
  9. Lei, Y., et al. Incorporation of active DNA/cationic polymer polyplexes into hydrogel scaffolds. Biomaterials. 31, 9106-9116 (2010).
  10. Lei, Y., Rahim, M., Ng, Q., Segura, T. Hyaluronic acid and fibrin hydrogels with concentrated DNA/PEI polyplexes for local gene delivery. J Control Release. 153, 255-261 (2011).
  11. Jang, J. H., Schaffer, D. V., Shea, L. D. Engineering biomaterial systems to enhance viral vector gene delivery. Mol Ther. 19, 1407-1415 (2011).
  12. Salvay, D. M., Zelivyanskaya, M., Shea, L. D. Gene delivery by surface immobilization of plasmid to tissue-engineering scaffolds. Gene Ther. 17, 1134-1141 (2010).
  13. Moss, A. J., Hamburger, S., Moore, R. M., Jeng, L. L., Vol Howie, L. J. . Advance Data. 191, (1991).
  14. Gristina, A. G., Naylor, P., Myrvik, Q. Infections from biomaterials and implants: a race for the surface). Med Prog Technol. 14, 205-224 (1988).
  15. Santerre, J. P., Woodhouse, K., Laroche, G., Labow, R. S. Understanding the biodegradation of polyurethanes: from classical implants to tissue engineering materials. Biomaterials. 26, 7457-7470 (2005).
  16. Tang, L., Eaton, J. W. Inflammatory responses to biomaterials. Am J Clin Pathol. 103, 466-471 (1995).
  17. Zimmerli, W., Sendi, P. Pathogenesis of implant-associated infection: the role of the host. Semin Immunopathol. 33, 295-306 (2011).
  18. Fishbein, I., et al. Bisphosphonate-mediated gene vector delivery from the metal surfaces of stents. Proc Natl Acad Sci U S A. 103, 159-164 (2006).
  19. Levy, R. J., et al. Localized adenovirus gene delivery using antiviral IgG complexation. Gene Ther. 8, 659-667 (2001).
  20. Ma, G., et al. Anchoring of self-assembled plasmid DNA/anti-DNA antibody/cationic lipid micelles on bisphosphonate-modified stent for cardiovascular gene delivery. Int J Nanomedicine. 8, 1029-1035 (2013).
  21. Hu, W. W., Lang, M. W., Krebsbach, P. H. Development of adenovirus immobilization strategies for in situ gene therapy. J Gene Med. 10, 1102-1112 (2008).
  22. Jang, J. H., et al. Surface immobilization of hexa-histidine-tagged adeno-associated viral vectors for localized gene delivery. Gene Ther. 17, 1384-1389 (2010).
  23. Bengali, Z., Shea, L. D. Gene Delivery by Immobilization to Cell-Adhesive Substrates. MRS Bull. 30, 659-662 (2005).
  24. Holmes, C. A., Tabrizian, M. Substrate-mediated gene delivery from glycol-chitosan/hyaluronic acid polyelectrolyte multilayer films. ACS Appl Mater Interfaces. 5, 524-531 (2013).
  25. Pannier, A. K., Wieland, J. A., Shea, L. D. Surface polyethylene glycol enhances substrate-mediated gene delivery by nonspecifically immobilized complexes. Acta Biomater. 4, 26-39 (2008).
  26. Wang, C. H., Pun, S. H. Substrate-mediated nucleic acid delivery from self-assembled monolayers. Trends Biotechnol. 29, 119-126 (2011).
  27. Fishbein, I., et al. Local delivery of gene vectors from bare-metal stents by use of a biodegradable synthetic complex inhibits in-stent restenosis in rat carotid arteries. Circulation. 117, 2096-2103 (2008).
  28. Fishbein, I., et al. Adenoviral vector tethering to metal surfaces via hydrolyzable cross-linkers for the modulation of vector release and transduction. Biomaterials. 34, 6938-6948 (2013).
  29. Mittereder, N., March, K. L., Trapnell, B. C. Evaluation of the concentration and bioactivity of adenovirus vectors for gene therapy. J. Virol. 70, 7498-7509 (1996).
  30. Forbes, S. P., et al. Modulation of NO and ROS production by AdiNOS transduced vascular cells through supplementation with L-Arg and BH4: Implications for gene therapy of restenosis. Atherosclerosis. 230, 23-32 (2013).
  31. Niinomi, M., Nakai, M., Hieda, J. Development of new metallic alloys for biomedical applications. Acta Biomater. 8, 3888-3903 (2012).
  32. Brito, L. A., Chandrasekhar, S., Little, S. R., Amiji, M. M. Non-viral eNOS gene delivery and transfection with stents for the treatment of restenosis. Biomed Eng Online. 9, 56 (2010).
  33. Egashira, K., et al. Local delivery of anti-monocyte chemoattractant protein-1 by gene-eluting stents attenuates in-stent stenosis in rabbits and monkeys. Arterioscler Thromb Vasc Biol. 27, 2563-2568 (2007).
  34. Ohtani, K., et al. Stent-based local delivery of nuclear factor-kappaB decoy attenuates in-stent restenosis in hypercholesterolemic rabbits. Circulation. 114, 2773-2779 (2006).
check_url/51653?article_type=t

Play Video

Cite This Article
Fishbein, I., Forbes, S. P., Adamo, R. F., Chorny, M., Levy, R. J., Alferiev, I. S. Vascular Gene Transfer from Metallic Stent Surfaces Using Adenoviral Vectors Tethered through Hydrolysable Cross-linkers. J. Vis. Exp. (90), e51653, doi:10.3791/51653 (2014).

View Video