Summary

Vascular Gene Transfer from Metallic Stent Surfaces Using Adenoviral Vectors Tethered through Hydrolysable Cross-linkers

Published: August 12, 2014
doi:

Summary

These studies report on reversible attachment of adenoviral gene vectors to coatless metal surfaces of stents and model mesh disks. Sustained release of transduction-competent viral particles contingent upon hydrolysis of cross-linkers used for vector immobilization results in a durable site-specific transgene expression in vascular cells and in stented arteries.

Abstract

In-stent restenosis presents a major complication of stent-based revascularization procedures widely used to re-establish blood flow through critically narrowed segments of coronary and peripheral arteries. Endovascular stents capable of tunable release of genes with anti-restenotic activity may present an alternative strategy to presently used drug-eluting stents. In order to attain clinical translation, gene-eluting stents must exhibit predictable kinetics of stent-immobilized gene vector release and site-specific transduction of vasculature, while avoiding an excessive inflammatory response typically associated with the polymer coatings used for physical entrapment of the vector. This paper describes a detailed methodology for coatless tethering of adenoviral gene vectors to stents based on a reversible binding of the adenoviral particles to polyallylamine bisphosphonate (PABT)-modified stainless steel surface via hydrolysable cross-linkers (HC). A family of bifunctional (amine- and thiol-reactive) HC with an average t1/2 of the in-chain ester hydrolysis ranging between 5 and 50 days were used to link the vector with the stent. The vector immobilization procedure is typically carried out within 9 hr and consists of several steps: 1) incubation of the metal samples in an aqueous solution of PABT (4 hr); 2) deprotection of thiol groups installed in PABT with tris(2-carboxyethyl) phosphine (20 min); 3) expansion of thiol reactive capacity of the metal surface by reacting the samples with polyethyleneimine derivatized with pyridyldithio (PDT) groups (2 hr); 4) conversion of PDT groups to thiols with dithiothreitol (10 min); 5) modification of adenoviruses with HC (1 hr); 6) purification of modified adenoviral particles by size-exclusion column chromatography (15 min) and 7) immobilization of thiol-reactive adenoviral particles on the thiolated steel surface (1 hr). This technique has wide potential applicability beyond stents, by facilitating surface engineering of bioprosthetic devices to enhance their biocompatibility through the substrate-mediated gene delivery to the cells interfacing the implanted foreign material.

Introduction

The effectiveness of gene therapy as a therapeutic modality is hampered by the poor targeting capacity of gene therapy vectors1,2. The lack of proper targeting results in sub-therapeutic levels of transgene expression at the target location and leads to a wide dissemination of vectors to non-target organs3, including those responsible for mounting immune responses against both the vector and encoded therapeutic product4,5. One potential means to offset the promiscuity of transduction and to promote targeting is to introduce gene vectors at the desired location in a form that precludes their free dissemination via blood and lymph. Typically, such efforts rely on a locally injectable delivery systems comprising of either viral or non-viral vectors admixed with fibrin, collagen or hyaluronic acid hydrogel matrices6-10 that are capable of transiently sustaining gene vectors at the injection site by physically entrapping them in a polymeric network.

Another generally accepted paradigm for localized gene therapy utilizes immobilization of gene vectors on the surface of implanted prosthetic devices11,12. Permanent medical implants (endovascular, bronchial, urological and gastrointestinal stents, pacemakers, artificial joints, surgical and gynecological meshes, etc.) are used yearly in tens of millions of patients13. While generally effective, these devices are prone to complications that are inadequately controlled for by current medical practices14-17. Implantable prosthetic devices present a unique opportunity to serve as proxy platforms for localized gene therapy treatment. From the pharmacokinetic standpoint, surface derivatization of medical implants with relatively low input doses of gene vectors results in achieving both high local concentrations of gene vectors on the implant/tissue interface and slowing the kinetics of their elimination from this location. As a consequence of protracted residence and enhanced uptake by the targeted cell population, vector immobilization minimizes spread of the gene vector. Thus the inadvertent inoculation of non-target tissues is reduced.

Surface tethering of gene vectors on implantable biomaterials (also termed as substrate-mediated gene delivery or solid phase gene delivery) has been implemented in cell culture and animal experiments using both specific (antigen-antibody18-20, avidin-biotin21,22) and non-specific23-26 (charge, van der Waals) interactions. The covalent attachment of vectors to the surface of the implanted device has been previously considered as non-functional since excessively strong bonds with the surface preclude vector internalization by target cells. Recently it was demonstrated that this limitation can be overcome through the use of spontaneously hydrolysable cross-linker used as the tethers between the modified metallic surface of the stent and capsid proteins of the adenoviral vector27,28. Moreover, the vector release rate and time course of transgene expression in vitro and in vivo can be modulated with the use of hydrolysable cross-linkers exhibiting different kinetics of hydrolysis28.

The present paper provides a detailed protocol for the reversible covalent attachment of adenoviral vectors to activated metal surface and introduces a useful experimental setup for studying ensuing transduction events in vitro in cultured smooth muscle and endothelial cells and in vivo in the rat carotid model of stent angioplasty.

Protocol

1. Preparation of Cy3-labeled Adenovirus for the Release Experiments Suspend 2 x 1012 particles of Adempty (approximately 2 x 1011 infective units) in 650 µl of carbonate/bicarbonate buffer (CBB; pH 9.3). Dissolve the content of 1 vial (0.2 mg) of amine-reactive fluorescent dye (Cy3(NHS)2) in 1 ml CBB to a final concentration of 0.2 mg/ml. Add 100 µl of the dye solution to virus suspension, vortex for 5 sec and incubate for 1 hr at…

Representative Results

Vector Release Experiments Tethering of adenoviral vectors to the surface of implants, including interventional devices such as endovascular stents, approximates the vector to the disease site, partially obviating the lack of vectors’ physical targeting. However, to be able to achieve therapeutic effects via the transduction of target tissue, the vector must be released from the surface (Figure 2). The use of hydrolysable cross-linkers was hypothesi…

Discussion

The presented protocol describes an operational method for substrate mediated gene delivery achieved through reversible attachment of adenoviral vectors to coatless stainless steel surfaces. While developed for the specific purpose of stent-based gene therapy of vascular restenosis, this technique has much broader applications in the areas of biomaterials, biomedical implants and gene therapy.

Although presented studies have solely utilized stainless steel as a prototypical metal substrate, PA…

Disclosures

The authors have nothing to disclose.

Acknowledgements

The authors do not have competing financial interests to disclose.

Materials

316 stainless steel mesh disks Electon Microscopy Sciences E200-SS
Generic 304-grade stainless steel stents Laserage custom order
AdeGFP University of Pennsylvania Vector Core AD-5-PV0504
AdLuc University of Pennsylvania Vector Core AD-5-PV1028
AdEMPTY University of Pennsylvania Vector Core A858
Cy3(NHS)2 GE Healthcare PA23000
Sepharose 6B Sigma-Aldrich 6B100-500ML
UV 96-well plates Costar 3635
Fluorometry 96-well plates Costar 3915
Cell culture 96-well plates Falcon 353072
Tris(2-carboxyethyl)phosphine hydrochloride (TCEP ) Pierce Thermo Scientific 20490
dithiothreitol (DTT) Pierce Thermo Scientific 20290
sulfo-LC-SPDP Pierce Thermo Scientific 21650
Spectrophotometer Molecular Devices  SpectraMax 190
Spectrofluorometer Molecular Devices SpectraMax Gemini EM
Orbital shaker incubator VWR 1575R
Horizontal airflow oven Shel Lab 1350 FM
Centra-CL2 centrifuge  International Equipment Company 426
Digital vortex mixerer Fisher Thermo Scientific 02-215-370
Eclipse TE300 fluorescence microscope Nikon  TE300
DC 500 CCD camera Leica DC-500
7500 Real-Time PCR system Applied Biosystems not available
IVIS Spectrum bioluminescence station Perkins-Elmer not available
EDTA dipotassium salt Sigma-Aldrich ED2P
Bovine serum albumin fraction V (BSA) Fisher Thermo Scientific BP1600-100
Tween-20 Sigma-Aldrich P1379
Dumont forceps Fine Science Tools 11255-20
A10 cell line  ATCC CRL-1476
Bovine aortic endothelial cells Lonza BW-6002
Luciferin, potassium salt Gold Biotechnology LUCK-1Ge
Pluronic F-127 Sigma-Aldrich P2443-250G
PBS  without calcium and magnesium Gibco 14190-136
Fetal bovine serum Gemini Bio-Products 100-106
Penicillin/Streptomycin solution Gibco 11540-122
DMEM, high glucose Corning cellgro 10-013-CV
0.25% Trypsin/EDTA Gibco 25200-056
QIAamp DNA micro kit Qiagen 56304
Power Sybr Green PCR Master Mix Applied Biosystems 4367659
MicroAmp Optical 96-well Reaction Plate Applied Biosystems N8010560
MicroAmp Optical Adhesive Film Applied Biosystems 4360954
Cephazolin  Apotex not available
Loxicom (Meloxicam) Norbrook not available
Heparin sodium APP Pharmaceuticals not available
Ketavet (Ketamine) VEDCO not available
Anased (Xylazine)  Lloid not available
Forane (Isoflurane)  Baxter not available
Curved Moria iris forceps Fine Science tools 11370-31
 Curved extra-fine Graefe forceps Fine Science Tools 11152-10
Dumont #5 forceps Fine Science Tools 11252-20
Vannas spring scissors Fine Science Tools 15018-10
Fine scissors – ToughCut Fine Science Tools 14058-09
Surgical scissors Fine Science Tools 14101-14
Vicryl suture (5-0) Ethicon J385
Suture thread (4/0 silk)  Fine Science Tools 18020-40
Michel suture clips Fine Science Tools 12040-02
Wound dilator (Lancaster eye specula) KLS Martin 34-149-07
Hot bead sterilizer Fine Science Tools 18000-45
Michel suture clip applicator Fine Science Tools 112028-12
Insyte Autoguard 24G IV catheter Beckton-Dickinson 381412
2F Fogarty catheter Edwards Lifesciences 120602F
Teflon tubing Vention 041100BST
PTA catheter NuMed custom order
Gauze pads Kendall Healthcare 9024
Cotton applicators Solon Manufacturing WOD1003
Saline Baxter 281321
10 ml syringe (Luer-Lok) Beckton-Dickinson 309604
1 ml syringe (Luer-Lok) Beckton-Dickinson 309628
Clippers with #40 blade Oster  78005-314
Transpore surgical tape 3M MM 15271
Puralube vet ointment Pharmaderm not available

References

  1. Boeckle, S., Wagner, E. Optimizing targeted gene delivery: chemical modification of viral vectors and synthesis of artificial virus vector systems. AAPS J. 8, E731-E742 (2006).
  2. Waehler, R., Russell, S. J., Curiel, D. T. Engineering targeted viral vectors for gene therapy. Nat Rev Genet. 8, 573-587 (2007).
  3. Campos, S. K., Barry, M. A. Current advances and future challenges in Adenoviral vector biology and targeting. Curr Gene Ther. 7, 189-204 (2007).
  4. Bangari, D. S., Mittal, S. K. Current strategies and future directions for eluding adenoviral vector immunity. Curr Gene Ther. 6, 215-226 (2006).
  5. Barry, M. A., et al. Systemic delivery of therapeutic viruses. Curr Opin Mol Ther. 11, 411-420 (2009).
  6. De Laporte, L., Shea, L. D. Matrices and scaffolds for DNA delivery in tissue engineering. Adv Drug Deliv Rev. 59, 292-307 (2007).
  7. Gustafson, J. A., Price, R. A., Greish, K., Cappello, J., Ghandehari, H. Silk-elastin-like hydrogel improves the safety of adenovirus-mediated gene-directed enzyme-prodrug therapy. Mol Pharm. 7, 1050-1056 (2010).
  8. Kidd, M. E., Shin, S., Shea, L. D. Fibrin hydrogels for lentiviral gene delivery in vitro and in vivo. J Control Release. 157, 80-85 (2012).
  9. Lei, Y., et al. Incorporation of active DNA/cationic polymer polyplexes into hydrogel scaffolds. Biomaterials. 31, 9106-9116 (2010).
  10. Lei, Y., Rahim, M., Ng, Q., Segura, T. Hyaluronic acid and fibrin hydrogels with concentrated DNA/PEI polyplexes for local gene delivery. J Control Release. 153, 255-261 (2011).
  11. Jang, J. H., Schaffer, D. V., Shea, L. D. Engineering biomaterial systems to enhance viral vector gene delivery. Mol Ther. 19, 1407-1415 (2011).
  12. Salvay, D. M., Zelivyanskaya, M., Shea, L. D. Gene delivery by surface immobilization of plasmid to tissue-engineering scaffolds. Gene Ther. 17, 1134-1141 (2010).
  13. Moss, A. J., Hamburger, S., Moore, R. M., Jeng, L. L., Vol Howie, L. J. . Advance Data. 191, (1991).
  14. Gristina, A. G., Naylor, P., Myrvik, Q. Infections from biomaterials and implants: a race for the surface). Med Prog Technol. 14, 205-224 (1988).
  15. Santerre, J. P., Woodhouse, K., Laroche, G., Labow, R. S. Understanding the biodegradation of polyurethanes: from classical implants to tissue engineering materials. Biomaterials. 26, 7457-7470 (2005).
  16. Tang, L., Eaton, J. W. Inflammatory responses to biomaterials. Am J Clin Pathol. 103, 466-471 (1995).
  17. Zimmerli, W., Sendi, P. Pathogenesis of implant-associated infection: the role of the host. Semin Immunopathol. 33, 295-306 (2011).
  18. Fishbein, I., et al. Bisphosphonate-mediated gene vector delivery from the metal surfaces of stents. Proc Natl Acad Sci U S A. 103, 159-164 (2006).
  19. Levy, R. J., et al. Localized adenovirus gene delivery using antiviral IgG complexation. Gene Ther. 8, 659-667 (2001).
  20. Ma, G., et al. Anchoring of self-assembled plasmid DNA/anti-DNA antibody/cationic lipid micelles on bisphosphonate-modified stent for cardiovascular gene delivery. Int J Nanomedicine. 8, 1029-1035 (2013).
  21. Hu, W. W., Lang, M. W., Krebsbach, P. H. Development of adenovirus immobilization strategies for in situ gene therapy. J Gene Med. 10, 1102-1112 (2008).
  22. Jang, J. H., et al. Surface immobilization of hexa-histidine-tagged adeno-associated viral vectors for localized gene delivery. Gene Ther. 17, 1384-1389 (2010).
  23. Bengali, Z., Shea, L. D. Gene Delivery by Immobilization to Cell-Adhesive Substrates. MRS Bull. 30, 659-662 (2005).
  24. Holmes, C. A., Tabrizian, M. Substrate-mediated gene delivery from glycol-chitosan/hyaluronic acid polyelectrolyte multilayer films. ACS Appl Mater Interfaces. 5, 524-531 (2013).
  25. Pannier, A. K., Wieland, J. A., Shea, L. D. Surface polyethylene glycol enhances substrate-mediated gene delivery by nonspecifically immobilized complexes. Acta Biomater. 4, 26-39 (2008).
  26. Wang, C. H., Pun, S. H. Substrate-mediated nucleic acid delivery from self-assembled monolayers. Trends Biotechnol. 29, 119-126 (2011).
  27. Fishbein, I., et al. Local delivery of gene vectors from bare-metal stents by use of a biodegradable synthetic complex inhibits in-stent restenosis in rat carotid arteries. Circulation. 117, 2096-2103 (2008).
  28. Fishbein, I., et al. Adenoviral vector tethering to metal surfaces via hydrolyzable cross-linkers for the modulation of vector release and transduction. Biomaterials. 34, 6938-6948 (2013).
  29. Mittereder, N., March, K. L., Trapnell, B. C. Evaluation of the concentration and bioactivity of adenovirus vectors for gene therapy. J. Virol. 70, 7498-7509 (1996).
  30. Forbes, S. P., et al. Modulation of NO and ROS production by AdiNOS transduced vascular cells through supplementation with L-Arg and BH4: Implications for gene therapy of restenosis. Atherosclerosis. 230, 23-32 (2013).
  31. Niinomi, M., Nakai, M., Hieda, J. Development of new metallic alloys for biomedical applications. Acta Biomater. 8, 3888-3903 (2012).
  32. Brito, L. A., Chandrasekhar, S., Little, S. R., Amiji, M. M. Non-viral eNOS gene delivery and transfection with stents for the treatment of restenosis. Biomed Eng Online. 9, 56 (2010).
  33. Egashira, K., et al. Local delivery of anti-monocyte chemoattractant protein-1 by gene-eluting stents attenuates in-stent stenosis in rabbits and monkeys. Arterioscler Thromb Vasc Biol. 27, 2563-2568 (2007).
  34. Ohtani, K., et al. Stent-based local delivery of nuclear factor-kappaB decoy attenuates in-stent restenosis in hypercholesterolemic rabbits. Circulation. 114, 2773-2779 (2006).
check_url/51653?article_type=t

Play Video

Cite This Article
Fishbein, I., Forbes, S. P., Adamo, R. F., Chorny, M., Levy, R. J., Alferiev, I. S. Vascular Gene Transfer from Metallic Stent Surfaces Using Adenoviral Vectors Tethered through Hydrolysable Cross-linkers. J. Vis. Exp. (90), e51653, doi:10.3791/51653 (2014).

View Video