Summary

评估小鼠卵母细胞中纺锤体组件检查点完整性

Published: September 13, 2022
doi:

Summary

染色体分离错误是卵母细胞的常见特征。因此,研究纺锤体组装检查点为生产健康卵子所需的机制提供了重要线索。本协议描述了三种互补测定,以评估小鼠卵母细胞中的纺锤体组装检查点完整性。

Abstract

非整倍性是导致人类早期流产和妊娠失败的主要遗传异常。导致非整倍性的染色体分离中的大多数错误发生在卵母细胞减数分裂期间,但为什么卵母细胞减数分裂容易出错仍然不完全清楚。在细胞分裂过程中,细胞通过激活纺锤体组装检查点(SAC)来防止染色体分离错误。这种控制机制依赖于检测动粒(KT)-微管(MT)附着和感应纺锤纤维产生的张力。当KT未连接时,SAC被激活并阻止细胞周期进程。SAC首先由MPS1激酶激活,MPS1激酶触发由MAD1,MAD2,BUB3和BUBR1组成的有丝分裂检查点复合体(MCC)的募集和形成。然后,MCC 扩散到细胞质中并螯合 CDC20,这是一种促进后期的复合物/环小体 (APC/C) 激活剂。一旦KT附着在微管上并且染色体在中期板上对齐,SAC被沉默,CDC20被释放,APC / C被激活,触发细胞周期蛋白B和Securin的降解,从而允许后期发作。与体细胞相比,卵母细胞中的SAC并不那么有效,因为尽管具有未连接的KT,但细胞仍可能经历后期。 了解为什么SAC更宽容,以及这种允许性是否是卵母细胞染色体分离错误的原因之一,仍然需要进一步研究。本协议描述了全面评估小鼠卵母细胞中SAC完整性的三种技术。这些技术包括使用诺考达唑解聚 MT 以评估 SAC 反应,通过跟踪 Securin 破坏的动力学来跟踪 SAC 沉默,以及通过免疫荧光评估 MAD2 募集到 KT。这些技术一起通过提供对SAC完整性的完整评估来探索生产健康卵子所需的机制。

Introduction

由染色体分离错误引起的非整倍性是早期流产的主要原因,与减数分裂的错误高度相关1。减数分裂与有丝分裂不同,因为它由两轮细胞分裂组成,没有干预DNA复制步骤。在减数分裂I中,同源染色体分离,而姐妹染色单体保持在一起。在卵母细胞中,此步骤容易出错,导致非整倍体卵子产生2

为了防止染色体分离错误,大多数细胞类型会激活一种暂停细胞周期的监视机制,称为纺锤体组装检查点(SAC)。这种机制感测动粒(KT)-微管(MT)附着,当染色体以双极方式定向时产生张力3。未连接的动粒体触发 SAC 反应,该反应从 MPS1(SAC 的主调节因子)募集到动粒34 开始。MPS1 启动其他 SAC 组件的募集,充当形成有丝分裂检查点复合体 (MCC) 的平台。MCC 由 MAD1、MAD2、BUB3 和 BUBR1 组成,通过隔离其激活剂 CDC20 扩散到细胞质中并抑制 APC/C 活化。一旦所有动粒稳定地附着在MT上并且染色体在中期板上对齐,SAC被沉默,MCC分解并释放CDC20,从而允许APC / C激活。活性APC/C降解Securin和细胞周期蛋白B,这是触发后期发病的两个关键步骤56。在体细胞中,SAC是严格的,因为它由单个未连接的动粒激活,并且足以诱导细胞周期停滞6。然而,在卵母细胞减数分裂期间,SAC更宽松,卵母细胞可以通过一个或多个未连接的动粒进入I期6,78910了解为什么SAC在卵母细胞中更宽容是该领域持续关注的领域。导致SAC活化或SAC沉默缺陷的机制可能导致染色体分离错误或延长的细胞周期停滞和细胞死亡。因此,评估维持卵母细胞中SAC完整性的机制对于理解形成健康整倍体卵子的过程非常重要。

该协议描述了通过检查检查点的不同关键步骤来全面评估小鼠卵母细胞减数分裂中SAC完整性的技术。首先,描述了诱导SAC激活后SAC反应的评估。这种激活是通过使用诺考达唑(一种解聚MTs 11的药物)产生未连接的动粒来实现的。其次,通过跟踪卵母细胞成熟过程中Securin降解的动力学来描述监测SAC沉默的方法。最后,采用基于免疫荧光的测定法来测量MAD2(MCC组分之一)对动粒的募集。总之,这些测定全面评估卵母细胞减数分裂成熟过程中的SAC完整性。

Protocol

这些协议中使用的所有小鼠均根据罗格斯大学机构动物使用和护理委员会(协议201702497)和美国国立卫生研究院指南进行饲养和饲养。这些监管机构批准了所有涉及动物研究的实验程序。本研究中使用的所有小鼠均为6-8周龄的CF-1雌性。 1. 实验准备 在开始SAC评估之前,按照先前发表的报告收集小鼠卵母细胞12。将收集的卵母细胞分成三个?…

Representative Results

诺考达唑治疗对SAC反应性的评估该实验的目的是评估SAC的活化和强度。通过使用诺考达唑解聚纺锤体微管,所有动粒都将不连接,这将导致SAC介导的细胞周期停滞。在目前的成像系统中,DMSO处理的对照卵母细胞在从米力农释放后约14小时挤出极性体(图1,上图)。与SAC活化一致,诺考达唑处理的卵母细胞在中期I期被捕,并且没有挤出极性体(图1,中间<strong…

Discussion

纺锤体组件检查点是细胞分裂过程中的关键控制机制,旨在防止染色体分离错误。它允许细胞有足够的时间来纠正不正确的 KT-MT 附着。卵母细胞减数分裂是一个容易出错的过程,其中大部分染色体错误分离发生在减数分裂I期间,导致非整倍体卵子的产生,这是人类早期流产和不育的主要原因124。正在测试几个假设,以解开为什么女性减数分裂有错误…

Disclosures

The authors have nothing to disclose.

Acknowledgements

该项目的资金由美国国立卫生研究院(R35GM136340 to KS)提供。

Materials

Bovine serum albumin (BSA) Sigma A4503
DAPI Life Technologies D1306
Dimethyl-sulfoxide (DMSO) Sigma D5879
Donkey-anti-rabbit-Alexa-568 Life Technologies A10042
EVOS FL Auto Imaging System Life Technologies Fluorescence microscope
EVOS Onstage Incubator Life Technologies Incubator chamber
Glass Bottom 96- well plates N 1.5 uncoated MatTek Corporation P96G-1.5-5-F
goat-anti-human-Alexa-633 Life Technologies A21091
HEPES Sigma H3537
Human anti-ACA Antibodies Incorporated 15-234 Dilution 1/30
ImageJ NIH
KCl Sigma P5405
KH2PO4 Sigma P5655
Leica SP8 equipped with a 63×, 1.40 NA oil immersion objective Leica
MgSO4·7H20 Sigma M7774
Milrinone Sigma M4659
Na2HPO4 Sigma S2429
NaCl Sigma S5886
NaN3 Sigma S2002
Nocodazole Sigma M1404
Paraformaldhyde (PFA) Sigma P6148
PIPES Sigma P6757
Rabbit anti- MAD2 Biolegend 924601 Dilution 1/1000; previously Covance #PRB-452C
Reversine Cayman Chemical 10004412
Triton-X Sigma 274348
Tween-20 Sigma X100
Vectashield Vector laboratories H-1000

References

  1. Gruhn, J. R., et al. Chromosome errors in human eggs shape natural fertility over reproductive life span. Science. 365 (6460), 1466-1469 (2019).
  2. Nagaoka, S. I., Hassold, T. J., Hunt, P. A. Human aneuploidy: mechanisms and new insights into an age-old problem. Nature Reviews. Genetics. 13 (7), 493-504 (2012).
  3. Musacchio, A. The molecular biology of spindle assembly checkpoint signaling dynamics. Current Biology. 25 (20), 1002-1018 (2015).
  4. Lara-Gonzalez, P., Westhorpe, F. G., Taylor, S. S. The spindle assembly checkpoint. Current Biology. 22 (22), 966-980 (2012).
  5. London, N., Biggins, S. Signalling dynamics in the spindle checkpoint response. Nature Reviews Molecular Cell Biology. 15 (11), 736-748 (2014).
  6. Kuhn, J., Dumont, S. Mammalian kinetochores count attached microtubules in a sensitive and switch-like manner. Journal of Cell Biology. 218 (11), 3583-3596 (2019).
  7. Jones, K. T., Lane, S. I. R. Molecular causes of aneuploidy in mammalian eggs. Development. 140 (18), 3719-3730 (2013).
  8. Gui, L., Homer, H. Spindle assembly checkpoint signalling is uncoupled from chromosomal position in mouse oocytes. Development. 139 (11), 1941-1946 (2012).
  9. Nagaoka, S. I., Hodges, C. A., Albertini, D. F., Hunt, P. A. Oocyte-specific differences in cell-cycle control create an innate susceptibility to meiotic errors. Current Biology. 21 (8), 651-657 (2011).
  10. Sebestova, J., Danylevska, A., Novakova, L., Kubelka, M., Anger, M. Lack of response to unaligned chromosomes in mammalian female gametes. Cell Cycle. 11 (16), 3011-3018 (2012).
  11. Vasquez, R. J., Howell, B., Yvon, A. M., Wadsworth, P., Cassimeris, L. Nanomolar concentrations of nocodazole alter microtubule dynamic instability in vivo and in vitro. Molecular Biology of the Cell. 8 (6), 973-985 (1997).
  12. Stein, P., Schindler, K. Mouse oocyte microinjection, maturation and ploidy assessment. Journal of Visualized Experiments. (53), e2851 (2011).
  13. Thomas, R. E., Thompson, J. G., Armstrong, D. T., Gilchrist, R. B. Effect of specific phosphodiesterase isoenzyme inhibitors during in vitro maturation of bovine oocytes on meiotic and developmental capacity. Biology of Reproduction. 71 (4), 1142-1149 (2004).
  14. Marin, D., Nguyen, A. L., Scott, R. T., Schindler, K. Using mouse oocytes to assess human gene function during meiosis I. Journal of Visualized Experiments. (134), e57442 (2018).
  15. Herbert, M., et al. Homologue disjunction in mouse oocytes requires proteolysis of securin and cyclin B1. Nature Cell Biology. 5 (11), 1023-1025 (2003).
  16. Solc, P., et al. Multiple requirements of PLK1 during Mouse oocyte maturation. PLoS One. 10 (2), 0116783 (2015).
  17. Blengini, C. S., Nguyen, A. L., Aboelenain, M., Schindler, K. Age-dependent integrity of the meiotic spindle assembly checkpoint in females requires Aurora kinase B. Aging Cell. 20 (11), 13489 (2021).
  18. Balboula, A. Z., et al. Haspin kinase regulates microtubule-organizing center clustering and stability through Aurora kinase C in mouse oocytes. Journal of Cell Science. 129 (19), 3648-3660 (2016).
  19. Nabti, I., Grimes, R., Sarna, H., Marangos, P., Carroll, J. Maternal age-dependent APC/C-mediated decrease in securin causes premature sister chromatid separation in meiosis II. Nature Communications. 8 (1), 15346 (2017).
  20. Blengini, C. S., Schindler, K. Immunofluorescence technique to detect subcellular structures critical to oocyte maturation. Methods in Molecular Biology. 1818, 67-76 (2018).
  21. Santaguida, S., Tighe, A., D’Alise, A. M., Taylor, S. S., Musacchio, A. Dissecting the role of MPS1 in chromosome biorientation and the spindle checkpoint through the small molecule inhibitor reversine. Journal of Cell Biology. 190 (1), 73-87 (2010).
  22. Musacchio, A. The molecular biology of spindle assembly checkpoint signaling dynamics. Current Biology. 25 (20), 1002-1018 (2015).
  23. Wassmann, K., Niault, T., Maro, B. Metaphase I arrest upon activation of the Mad2-dependent spindle checkpoint in mouse oocytes. Current Biology. 13 (18), 1596-1608 (2003).
  24. Hassold, T., Hall, H., Hunt, P. The origin of human aneuploidy: where we have been, where we are going. Human Molecular Genetics. 16, 203-208 (2007).
  25. Gui, L., Homer, H. Spindle assembly checkpoint signalling is uncoupled from chromosomal position in mouse oocytes. Development. 139 (11), 1941-1946 (2012).
  26. Homer, H. A., et al. Mad2 prevents aneuploidy and premature proteolysis of cyclin B and securin during meiosis I in mouse oocytes. Genes and Development. 19 (2), 202-207 (2005).
  27. Blengini, C. S., et al. Aurora kinase A is essential for meiosis in mouse oocytes. PLOS Genetics. 17 (4), 1009327 (2021).
  28. Hagting, A., et al. Human securin proteolysis is controlled by the spindle checkpoint and reveals when the APC/C switches from activation by Cdc20 to Cdh1. Journal of Cell Biology. 157 (7), 1125-1137 (2002).
  29. Rodriguez-Rodriguez, J. A., et al. Distinct roles of RZZ and Bub1-KNL1 in mitotic checkpoint signaling and kinetochore expansion. Current Biology. 28 (21), 3422-3429 (2018).
  30. Chambon, J. P., Hached, K., Wassmann, K. Chromosome spreads with centromere staining in mouse oocytes. Methods in Molecular Biology. 957, 203-212 (2013).

Play Video

Cite This Article
Aboelenain, M., Schindler, K., Blengini, C. S. Evaluation of the Spindle Assembly Checkpoint Integrity in Mouse Oocytes. J. Vis. Exp. (187), e64459, doi:10.3791/64459 (2022).

View Video