Summary

破译和成像发病机制与盘带<em>脓肿分枝杆菌</em>斑马鱼胚胎

Published: September 09, 2015
doi:

Summary

Optically transparent zebrafish embryos are widely used to study and visualize in real time the interactions between pathogenic microorganisms and the innate immune cells. Micro-injection of Mycobacterium abscessus, combined with fluorescence imaging, is used to scrutinize essential pathogenic features such as cord formation in zebrafish embryos.

Abstract

Zebrafish (Danio rerio) embryos are increasingly used as an infection model to study the function of the vertebrate innate immune system in host-pathogen interactions. The ease of obtaining large numbers of embryos, their accessibility due to external development, their optical transparency as well as the availability of a wide panoply of genetic/immunological tools and transgenic reporter line collections, contribute to the versatility of this model. In this respect, the present manuscript describes the use of zebrafish as an in vivo model system to investigate the chronology of Mycobacterium abscessus infection. This human pathogen can exist either as smooth (S) or rough (R) variants, depending on cell wall composition, and their respective virulence can be imaged and compared in zebrafish embryos and larvae. Micro-injection of either S or R fluorescent variants directly in the blood circulation via the caudal vein, leads to chronic or acute/lethal infections, respectively. This biological system allows high resolution visualization and analysis of the role of mycobacterial cording in promoting abscess formation. In addition, the use of fluorescent bacteria along with transgenic zebrafish lines harbouring fluorescent macrophages produces a unique opportunity for multi-color imaging of the host-pathogen interactions. This article describes detailed protocols for the preparation of homogenous M. abscessus inoculum and for intravenous injection of zebrafish embryos for subsequent fluorescence imaging of the interaction with macrophages. These techniques open the avenue to future investigations involving mutants defective in cord formation and are dedicated to understand how this impacts on M. abscessus pathogenicity in a whole vertebrate.

Introduction

脓肿分枝杆菌是一种新兴的病原体,导致广泛的人类临床综合征谱。这些包括皮肤感染以及严重的慢性肺部感染,免疫功能低下和囊性纤维化患者1,2,3,4大多遇到。M.脓肿也算是一大快速增长的分枝杆菌负责人和医院和医源性感染的物种。此外,最近的几份报告强调了可能性,即M.脓肿可以穿过血-脑屏障并诱导在中枢神经系统(CNS)5,6-重要病变。尽管是一个快速的种植者,M。脓肿展品还与相关的那些结核分枝杆菌的致病性的几个功能,包括肉芽肿结构中保持沉默多年,产生干酪样病变的肺部7的能力。更令人震惊的是低仙M的敏度脓肿抗生素,使这些感染极难治疗导致显著治疗失败率8,9。这一物种的重要威胁,主要是其对抗生素的内在阻力,这是公共卫生机构10重大关切和禁忌肺移植11。

脓肿分支杆菌显示平滑(S)或粗(R)的菌落形态,导致不同临床结果。与此相反的S品系,R细菌有增加的趋势端到端,导致绳索或条索状结构12,13。基于两种细胞或动物模型有几个独立的研究揭示了R的超毒力型形态型14,15。从流行病学研究,M的最严重的情况下, 脓肿肺部感染似乎被R相关联的变体16,它是唯一的变体一直被视为持续数年被感染主机 3。该形态类型的差异依赖于表面相关glycopeptidolipids(GPL)12的存在(在S)或损失(在读)。然而,由于目前可用的蜂窝/动物模型的固有局限性用于研究M.脓肿感染,我们对R或S变体的病理生理事件的知识仍然是模糊的。 通过静脉注射或气溶胶途径免疫能力的小鼠感染导致短暂的殖民统治,阻碍利用老鼠来研究持续感染和体内药物敏感试验17。因此,开发的动物模型适合于宿主反应的操作是一项​​重大的挑战。在这种背景下,近来已经开发感染的非哺乳动物模型,包括果蝇 18,提供了几个优点,例如成本,速度和伦理可接受ö版本1.00的小鼠模型。斑马鱼( 斑马鱼 )感染模型也已经探索了可视化,通过无创成像,M的进展和年表脓肿感染的活的动物19。重要的是,概念证明也成立了证明其适合在体内对M.抗生素评估脓肿 17,20。

斑马鱼已经在过去二十年期间已广泛用于研究各种病原体和宿主的免疫系统 21之间的交互。这种替代脊椎动物模式的日益成功,依赖于激励和验证其用于更好地了解众多的病毒和细菌感染19,22,23,24,25,26,27,28,29重大而独特的机会。相对于大多数其他的动物模型,斑马鱼的胚胎是光学透明的,从而允许非侵入性荧光成像30。此HA为首的研究M.脓肿感染斑马鱼的胚胎以前所未有的细节,与细胞外录制的说明中,表示细菌形态可塑性的一例最终。盘带代表免疫系统颠覆的新机制和一个关键机制促进急性M的发病机制脓肿感染19。

这份报告描述了使用斑马鱼胚胎破译M的病理生理特点新的工具和方法脓肿感染并研究杆菌和先天免疫系统之间的亲密互动。首先,将详细显微注射协议,它包括的细菌接种物,胚胎制备,和本身感染的处理,提出。方法特别适用于评估M.脓肿毒力通过测量各种参数,如主机存活和细菌负荷,现介绍。特别重点就如何进行监控,在时空水平,感染的命运和进展以及 M.宿主的免疫反应脓肿利用视频显微镜。此外,为了调查M.期间的贡献和巨噬细胞的作用脓肿感染,方法生成的巨噬细胞的贫胚胎(使用genetically-或化学为基础的方法)进行说明。最后,协议的可视化使用固定的或活的胚胎的巨噬细胞和中性粒细胞记录的特定交互。

本报告的目的是刺激进一步的研究阐明新的光转化为M.脓肿毒力机制和盘带在建立急性和不受控制的感染过程的特别的作用。

Protocol

斑马鱼实验步骤必须符合相关的制度和政府规章。在本研究中,斑马鱼实验在大学蒙彼利埃,根据用于处理实验动物的欧盟指导方针(http://ec.europa.eu/environment/chemicals/lab_animals/home_en.htm),并在参考批准CEEA-LR-13007。 1.制备试剂和显微注射设备制备鱼水由在1升蒸馏水中溶解31 0.06克即时海洋海盐,然后高压灭菌消毒(120℃,20分钟),并存储在28.5℃下长达1个月?…

Representative Results

虽然各种解剖部位可以注入32,尾静脉注射经常被用来产生全身感染的后续分析,包括存活实验中,细菌负荷判定,吞噬活性或帘线形成。在尾部肌肉注射用于评估的巨噬细胞的募集在注射(图3A)的部位。为了研究和比较M的 R和S变种的毒力脓肿 ,荧光细菌悬浮液注入在30 HPF胚胎( 图3A)19 的尾静脉。与此相反的S变体时,R形态型诱?…

Discussion

斑马鱼最近出现作为优良的脊椎动物模型系统用于使用实时36广阔的领域,共焦成像研究细菌感染的动态。分散分枝杆菌悬浮液(协议2.2)与显微注射方法(协议4)相结合,可重现的全身性感染,以及随后的监测和感染,特别注重与主机巨噬细胞细菌相互作用的进展可视化。 M的毒力脓肿体内可以调查由于使用的野生型金黄斑马鱼37。为了研究M之间的相?…

Divulgations

The authors have nothing to disclose.

Acknowledgements

作者感谢K. Kissa有益的讨论,并提供脂,氯膦酸二钠和L.莱玛克里斯南的pTEC27和pTEC15,让tdTomato和芥末的表现,分别的一份厚礼。这项工作形成了法国国家研究署的项目(ZebraFlam ANR-10-MIDI-009和DIMYVIR ANR-13-BSV3-007-01)和欧盟第七框架计划的一部分(FP7-人2011年ITN)根据赠款协议没有。 PITN-GA-2011-289209的玛丽 – 居里的初始培训网络FishForPharma。我们还要感谢该协会格雷戈里Lemarchal和Vaincre拉Mucoviscidose(RF20130500835),用于资助CM杜邦。

Materials

BBL MGIT PANTA BD Biosciences 245114
Bovine Serum Albumin  Euromedex 04-100-811-E
Catalase from Bovine Liver  Sigma-Aldrich C40
Difco Middlebrook 7H10 Agar BD Biosciences 262710
Difco Middlebrook 7H9 Broth BD Biosciences 271310
Ethyl 3-aminobenzoate methanesulfonate salt (Tricaine) Sigma-Aldrich A5040
Oleic Acid Sigma-Aldrich O1008
Paraformaldehyde Delta Microscopie 15710
Phenol Red Sigma-Aldrich 319244
Tween 80 Sigma-Aldrich P4780
Agar Gibco Life Technologie 30391-023
Low melting agarose Sigma-Aldrich
Instant Ocean Sea Salts  Aquarium Systems Inc
Borosilicate glass capillaries  Sutter instrument Inc BF100-78-10 1mm O.D. X 0.78 mm I.D.
Micropipette puller device  Sutter Instrument Inc Flamming/Brown Micropipette Puller p-87
Microinjector Tritech Research  Digital microINJECTOR, MINJ-D
Tweezers Sciences Tools inc Dumont # M5S 
Microloader Tips Eppendorf

References

  1. Brown-Elliott, B. A., Wallace, R. J. Clinical and taxonomic status of pathogenic nonpigmented or late-pigmenting rapidly growing mycobacteria. Clinical Microbiology Reviews. 15 (4), 716-746 (2002).
  2. Aitken, M. L., Limaye, A., et al. Respiratory outbreak of Mycobacterium abscessus subspecies massiliense in a lung transplant and cystic fibrosis center. American Journal of Respiratory and Critical Care Medicine. 185 (2), 231-232 (2012).
  3. Gilljam, M., Lindblad, A., Ridell, M., Wold, A. E., Welinder-Olsson, C. Molecular epidemiology of Mycobacterium abscessus, with focus on cystic fibrosis. Journal of Clinical Microbiology. 45 (5), 1497-1504 (2007).
  4. Roux, A. -. L., Catherinot, E., et al. Multicenter study of prevalence of nontuberculous mycobacteria in patients with cystic fibrosis in France. Journal of Clinical Microbiology. 47 (12), 4124-4128 (2009).
  5. Lee, M. -. R., Cheng, A., et al. CNS infections caused by Mycobacterium abscessus complex: clinical features and antimicrobial susceptibilities of isolates. The Journal of Antimicrobial Chemotherapy. 67 (1), 222-225 (2012).
  6. Talati, N. J., Rouphael, N., Kuppalli, K., Franco-Paredes, C. Spectrum of CNS disease caused by rapidly growing mycobacteria. The Lancet Infectious Diseases. 8 (6), 390-398 (2008).
  7. Medjahed, H., Gaillard, J. -. L., Reyrat, J. -. M. Mycobacterium abscessus: a new player in the mycobacterial field. Trends in Microbiology. 18 (3), 117-123 (2010).
  8. Griffith, D. E., Girard, W. M., Wallace, R. J. Clinical features of pulmonary disease caused by rapidly growing mycobacteria. An analysis of 154 patients. The American Review of Respiratory Disease. 147 (5), 1271-1278 (1993).
  9. Nessar, R., Cambau, E., Reyrat, J. M., Murray, A., Gicquel, B. Mycobacterium abscessus: a new antibiotic nightmare. The Journal of Antimicrobial Chemotherapy. 67 (4), 810-818 (2012).
  10. Sanguinetti, M., Ardito, F., et al. Fatal pulmonary infection due to multidrug-resistant Mycobacterium abscessus a patient with cystic fibrosis. Journal of Clinical Microbiology. 39 (2), 816-819 (2001).
  11. Griffith, D. E., Aksamit, T., et al. An official ATS/IDSA statement: diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases. American Journal of Respiratory and Critical Care Medicine. 175 (4), 367-416 (2007).
  12. Howard, S. T., Rhoades, E., et al. Spontaneous reversion of Mycobacterium abscessus a smooth to a rough morphotype is associated with reduced expression of glycopeptidolipid and reacquisition of an invasive phenotype. Microbiology (Reading, England). 152 (Pt 6), 1581-1590 (2006).
  13. Chardi, A., Olivares, F., Byrd, T. F., Julián, E., Brambilla, C., Luquin, M. Demonstration of cord formation by rough Mycobacterium abscessus variants: implications for the clinical microbiology laboratory. Journal of Clinical Microbiology. 49 (6), 2293-2295 (2011).
  14. Byrd, T. F., Lyons, C. R. Preliminary characterization of a Mycobacterium abscessus mutant in human and murine models of infection. Infection and Immunity. 67 (9), 4700-4707 (1999).
  15. Catherinot, E., Clarissou, J., et al. Hypervariance of a rough variant of the Mycobacterium abscessus type strain. Infection and Immunity. 75 (2), 1055-1058 (2007).
  16. Catherinot, E., Roux, A. -. L., et al. Acute respiratory failure involving an R variant of Mycobacterium abscessus. Journal of Clinical Microbiology. 47 (1), 271-274 (2009).
  17. Bernut, A., Le Moigne, V., Lesne, T., Lutfalla, G., Herrmann, J. -. L., Kremer, L. In vivo assessment of drug efficacy against Mycobacterium abscessus using the embryonic zebrafish test system. Antimicrobial Agents and Chemotherapy. 58 (7), 4054-4063 (2014).
  18. Oh, C. -. T., Moon, C., Jeong, M. S., Kwon, S. -. H., Jang, J. Drosophila melanogaster for Mycobacterium abscessus infection. Microbes and Infection / Institut Pasteur. 15 (12), 788-795 (2013).
  19. Bernut, A., Herrmann, J. -. L., et al. Mycobacterium abscessus cording prevents phagocytosis and promotes abscess formation. Proceedings of the National Academy of Sciences of the United States of America. 111 (10), E943-E952 (2014).
  20. Dubée, V., Bernut, A., et al. β-Lactamase inhibition by avibactam in Mycobacterium abscessus. Journal of Antimicrobial Chemotherapy. 70 (4), 1051-1058 (2015).
  21. Torraca, V., Masud, S., Spaink, H. P., Meijer, A. H. Macrophage-pathogen interactions in infectious diseases: new therapeutic insights from the zebrafish host model. Disease Models Mechanisms. 7 (7), 785-797 (2014).
  22. Alibaud, L., Rombouts, Y., et al. A Mycobacterium marinum TesA mutant defective for major cell wall-associated lipids is highly attenuated in Dictyostelium discoideum and zebrafish embryos. Molecular Microbiology. 80 (4), 919-934 (2011).
  23. Clay, H., Volkman, H. E., Ramakrishnan, L. Tumor necrosis factor signaling mediates resistance to mycobacteria by inhibiting bacterial growth and macrophage death. Immunity. 29 (2), 283-294 (2008).
  24. Palha, N., Guivel-Benhassine, F., et al. Real-time whole-body visualization of Chikungunya Virus infection and host interferon response in zebrafish. PLoS pathogens. 9 (9), e1003619 (2013).
  25. Mostowy, S., Boucontet, L., et al. The zebrafish as a new model for the in vivo study of Shigella flexneri with phagocytes and bacterial autophagy. PLoS pathogens. 9 (9), e1003588 (2013).
  26. Prajsnar, T. K., Cunliffe, V. T., Foster, S. J., Renshaw, S. A. A novel vertebrate model of Staphylococcus aureus reveals phagocyte-dependent resistance of zebrafish to non-host specialized pathogens. Cellular Microbiology. 10 (11), 2312-2325 (2008).
  27. Van der Sar, A. M., Appelmelk, B. J., Vandenbroucke-Grauls, C. M. J. E., Bitter, W. A star with stripes: zebrafish as an infection model. Trends in Microbiology. 12 (10), 451-457 (2004).
  28. Vergunst, A. C., Meijer, A. H., Renshaw, S. A., O’Callaghan, D. Burkholderia cenocepacia creates an intramacrophage replication niche in zebrafish embryos, followed by bacterial dissemination and establishment of systemic infection. Infection and Immunity. 78 (4), 1495-1508 (2010).
  29. Levraud, J. -. P., Disson, O., et al. Real-time observation of Listeria monocytogenes-phagocyte interactions in living zebrafish larvae. Infection and Immunity. 77 (9), 3651-3660 (2009).
  30. Meijer, A. H., Spaink, H. P. Host-pathogen interactions made transparent with the zebrafish model. Current Drug Targets. 12 (7), 1000-1017 (2011).
  31. Westerfield, M. . The Zebrafish Book: A Guide for the Laboratory Use of Zebrafish (Danio Rerio). , (2007).
  32. Benard, E. L., van der Sar, A. M., Ellett, F., Lieschke, G. J., Spaink, H. P., Meijer, A. H. Infection of zebrafish embryos with intracellular bacterial pathogens. Journal of Visualized Experiments. (61), e3781 (2012).
  33. Van Rooijen, N., Sanders, A. Liposome mediated depletion of macrophages: mechanism of action, preparation of liposomes and applications. Journal of Immunological Methods. 174 (1-2), 83-93 (1994).
  34. Adams, K. N., Takaki, K., et al. Drug tolerance in replicating mycobacteria mediated by a macrophage-induced efflux mechanism. Cell. 145 (1), 39-53 (2011).
  35. Ramakrishnan, L. Looking within the zebrafish to understand the tuberculous granuloma. Advances in Experimental Medicine and Biology. 783, 251-266 (2013).
  36. Davis, J. M., Clay, H., Lewis, J. L., Ghori, N., Herbomel, P., Ramakrishnan, L. Real-time visualization of Mycobacterium-macrophage interactions leading to initiation of granuloma formation in zebrafish embryos. Immunity. 17 (6), 693-702 (2002).
  37. Lamason, R. L., Mohideen, M. -. A. P. K., et al. SLC24A5, a putative cation exchanger, affects pigmentation in zebrafish and humans. Science (New York, NY). 310 (5755), 1782-1786 (2005).
  38. Renshaw, S. A., Loynes, C. A., Trushell, D. M. I., Elworthy, S., Ingham, P. W., Whyte, M. K. B. A transgenic zebrafish model of neutrophilic inflammation. Blood. 108 (13), 3976-3978 (2006).
  39. Hall, C., Flores, M. V., Storm, T., Crosier, K., Crosier, P. The zebrafish lysozyme C promoter drives myeloid-specific expression in transgenic fish. BMC developmental biology. 7, 42 (2007).
  40. Takaki, K., Davis, J. M., Winglee, K., Ramakrishnan, L. Evaluation of the pathogenesis and treatment of Mycobacterium marinum in zebrafish. Nature Protocols. 8 (6), 1114-1124 (2013).
  41. Stoop, E. J. M., Schipper, T., et al. Zebrafish embryo screen for mycobacterial genes involved in the initiation of granuloma formation reveals a newly identified ESX-1 component. Disease Models Mechanisms. 4 (4), 526-536 (2011).
  42. Carvalho, R., de Sonneville, J., et al. A high-throughput screen for tuberculosis progression. PloS One. 6 (2), e16779 (2011).
check_url/fr/53130?article_type=t

Play Video

Citer Cet Article
Bernut, A., Dupont, C., Sahuquet, A., Herrmann, J., Lutfalla, G., Kremer, L. Deciphering and Imaging Pathogenesis and Cording of Mycobacterium abscessus in Zebrafish Embryos. J. Vis. Exp. (103), e53130, doi:10.3791/53130 (2015).

View Video