Summary

该芯片外型方法:确定蛋白质-DNA相互作用与近基部精密配对

Published: December 23, 2016
doi:

Summary

Here, we present a protocol to achieve near base pair resolution of protein-DNA interactions. This is obtained by exonuclease treatment of DNA fragments selectively enriched by chromatin immunoprecipitation (ChIP-exo) followed by high throughput sequencing.

Abstract

染色质免疫沉淀(ChIP)是表观遗传学和基因调节的隔离特定蛋白质-DNA相互作用领域不可缺少的工具。沉淀耦合到高通量测序(芯片起)通常用于确定与染色质相互作用的蛋白质的基因组位置。然而,芯片起是由几百个碱基对相对低的映射分辨率和高背景信号受到阻碍。芯片外的方法是芯片起的改良版本对分辨率和噪声大大提高。芯片外方法论的主要区别是:在图书馆准备的工作流程,有效足迹左侧的lambda核酸外切酶消化的引入和蛋白质-DNA交联网站的权5'DNA边界。然后芯片外库进行高通量测序。所得到的数据可以被利用,以提供独特的和超高分辨率分析上市功能组织ÒF中的基因组中。在这里,我们描述了我们优化和精简了哺乳动物系统和新一代测序边合成平台芯片外的方法。

Introduction

染色质免疫沉淀(ChIP)是一种强有力的方法通过对与在活细胞中给定蛋白质相互作用的DNA片段选择性富集来研究基因调控机制。的ChIP富集的DNA片段的检测方法已演变随着技术的改进,从检测单一位点(标准芯片定量PCR)的对寡核苷酸芯片(芯片芯片),以高通量测序(芯片起)1杂交。虽然芯片起已经看到了广泛的应用,染色质异质性和非特异性DNA的相互作用,阻碍了数据质量,导致误报和不准确的映射。为了规避这些限制,弗兰克普格博士开发芯片外方法2。沉淀 – 外的显着特点是,它包括一个5'至3'外切核酸酶,从而有效地足迹转录因子结合的位置。其结果,芯片外的方法实现了更高的分辨率,detectio的更大的动态范围N,和较低的背景噪音。

虽然沉淀外型更加技术上具有挑战性的掌握比芯片起,它被广泛地研究的目的使用不同的生物系统3-8获得独特的超高分辨率的见解采纳。实际上,芯片外已成功地应用于细菌,酵母,小鼠,大鼠和人的细胞系统。作为证据原则,芯片外原本用于识别的精确结合基序的酵母转录一把因素2。也用于在酵母中的技术,研究了转录预起始复合物的组织,并破译各种组蛋白9,10 subnucleosomal结构。最近,我们利用的ChIP-外解决相邻TFIIB和Pol II结合在促进人的事件,并表明广泛转录分歧源于不同的起始复合物11。

这里提出的工作流程最优化和streamlined用于哺乳动物的ChIP -外( 图1)。首先,住伯或组织培养细胞用甲醛处理通过共价交联的体内蛋白-DNA相互作用保存。将细胞裂解和染色质剪切至〜100 – 500碱基对大小的片段。沉淀然后选择性富集为交联到感兴趣的蛋白质的DNA片段。在这点上,芯片起库通常制备,这固有地限制了检测分辨率到几百个碱基对的平均片段大小。然而,芯片外克服通过调整左和右5所述蛋白质-DNA交联位点以拉姆达核酸外切酶的“DNA边界此限制。测序文库,然后从外切核酸酶消化的DNA构建了如下详述。所得嵌套5'边界代表蛋白质-DNA相互作用( 图1,步骤14)的体内足迹,并且通过高通量测序进行检测。 Alt键霍夫芯片外的方法比芯片起更多的参与,多数步骤之间的转换需要简单洗珠,最大限度地减少样品损失和实验的可变性。重要的是,由于沉淀外型是芯片起,即成功的芯片起也应该是成功的为片外的任何样品的改良版本。

在从芯片起一个根本不同的数据结构的ChIP外型结果蛋白-DNA相互作用的体内足迹。虽然通用芯片起呼叫者可以应用到芯片外的数据,以获得最精确的峰值呼叫,我们建议专门为片外数据心目中的独特的结构设计,生物信息学工具。这些措施包括Genetrack,创业板,MACE,Peakzilla和ExoProfiler 12-15。

Protocol

注:双蒸H 2 O或等值级分子被推荐用于所有的缓冲区和反应混合物。 0天:材料制备和电池丰收 1.缓冲液配制准备裂解缓冲液1 – 3( 表1 – 3),并添加100微升完整的蛋白酶抑制剂股票(CPI)为各50毫升缓冲液在使用前的。通过溶解一片1毫升分子级的H 2 O.准备CPI股票准备内部缓冲器( 表4 – 7)。加入100微…

Representative Results

下图说明从这里提交芯片外协议代表性的结果。相比之下,传统的芯片起的方法用几个酶促步骤,芯片外要求11顺序依赖性酶反应( 图1)。因此,必须小心在每个步骤可采取以确保每个反应组分加入到其相应的反应母液。我们建议基于所述反应表公式化电子表格来自动执行反应母液的计算,打印生成的表,它被加入到主混合物后,然后检查关每个项目。 <p…

Discussion

我们提出了一个功能基因组学的协议,以确定染色质以接近碱基对的分辨率相互作用的蛋白质在一个不带偏见,全基因组的方式精确绑定位置。实现近基部对映射解决最关键的一步就是芯片富集DNA的核酸外切酶处理而免疫沉淀留在磁性树脂。从表面上看,蛋白质复合物有可能阻断体内的任何给定的亚单位(如染色质重塑复合物或核小颗粒)的足迹。然而,如以前报道10中

Divulgations

The authors have nothing to disclose.

Acknowledgements

We thank the Venters Lab and members of the Molecular Physiology and Biophysics Department for helpful discussions. Special thanks to Frank Pugh for his guidance, mentoring, and many insightful discussions on the nuances of ChIP-exo while I was a post-doctoral fellow in his laboratory.

Materials

37% formaldehyde, methanol free, 10x10ml ampules ThermoFisher Scientific 28908 Section 3
Complete Protease Inhibitor cocktail (CPI) Roche Life Science 11873580001 Sections 4, 8
Bioruptor sonicator Diagenode UCD200 Section 5
15 ml polystyrene tubes BD Falcon 352095 Section 5
MagSepharose Protein G Xtra beads GE Healthcare 28-9670-66 Section 6
DynaMag-1.5ml Side Magnetic Rack Invitrogen 12321D Sections 6-17, 22
Mini-Tube Rotator Fisher Scientific 05-450-127 Sections 7, 22
T4 DNA Polymerase New England BioLabs M0203 Section 9
DNA Polymerase I, Klenow New England BioLabs M0210 Section 9
10x NEBuffer 2 (10x Reaction Buffer 2) New England BioLabs B7002 Sections 9-11, 13, 15, 20
Thermomixer C Eppendorf 5382 Sections 9-16
ATP Roche Life Science 010419979001 Sections 9, 11, 13
dNTPs New England BioLabs N0447 Sections 9, 12, 19, 23
T4 Polynucleotide Kinase New England BioLabs M0201 Sections 9, 13
dATP New England BioLabs N0440 Sections 10, 20
Klenow 3'-5' Exo Minus New England BioLabs M0212 Sections 10, 20
T4 DNA ligase  New England BioLabs M0202 Sections 11, 21
Φ-29 DNA Polymerase New England BioLabs M0269 Sections 12, 19
10x Φ-29 Buffer New England BioLabs B0269 Sections 12, 19
Lambda Exonuclease New England BioLabs M0262 Section 14
10x Lambda Buffer New England BioLabs B0262 Section 14
RecJf Exonuclease New England BioLabs M0264 Section 15
Proteinase K Roche Life Science 03115828001 Section 16
Glycogen Roche Life Science 010901393001 Section 18
10x T4 Ligase Buffer New England BioLabs B0202 Section 21
AMPure XP (clean up) beads  Beckman Coulter A63881 Section 22
Q5 Hot Start DNA Polymerase  New England BioLabs M0493 Section 23
5x Q5 Buffer (5x PCR Buffer) New England BioLabs B9027 Section 23
Qubit Fluorometer Invitrogen Q33216 Section 25
QIAquick Gel Extraction Kit Qiagen 28704 Section 25
Optical Clear Qubit tubes  Invitrogen Q32856 Section 26
Qubit dsDNA High Sensitivity Assay kit Invitrogen Q32851 Section 26

References

  1. Venters, B. J., Pugh, B. F. How eukaryotic genes are transcribed. Crit Rev Biochem Mol Biol. 44, 117-141 (2009).
  2. Rhee, H. S., Pugh, B. F. Comprehensive genome-wide protein-DNA interactions detected at single-nucleotide resolution. Cell. 147, 1408-1419 (2011).
  3. Chen, J., et al. Single-molecule dynamics of enhanceosome assembly in embryonic stem cells. Cell. 156, 1274-1285 (2014).
  4. Wales, S., Hashemi, S., Blais, A., McDermott, J. C. Global MEF2 target gene analysis in cardiac and skeletal muscle reveals novel regulation of DUSP6 by p38MAPK-MEF2 signaling. Nucleic acids research. 42, 11349-11362 (2014).
  5. Cho, S., et al. The architecture of ArgR-DNA complexes at the genome-scale in Escherichia coli. Nucleic Acids Res. 43, 3079-3088 (2015).
  6. Katainen, R., et al. CTCF/cohesin-binding sites are frequently mutated in cancer. Nat Genet. 47, 818-821 (2015).
  7. Murphy, M. W., et al. An ancient protein-DNA interaction underlying metazoan sex determination. Nat Struct Mol Biol. 22, 442-451 (2015).
  8. Zere, T. R., et al. Genomic Targets and Features of BarA-UvrY (-SirA) Signal Transduction Systems. PLoS One. 10, e0145035 (2015).
  9. Rhee, H. S., Pugh, B. F. Genome-wide structure and organization of eukaryotic pre-initiation complexes. Nature. 483, 295-301 (2012).
  10. Rhee, H. S., Bataille, A. R., Zhang, L., Pugh, B. F. Subnucleosomal structures and nucleosome asymmetry across a genome. Cell. , 1377-1388 (2014).
  11. Pugh, B. F., Venters, B. J. Genomic Organization of Human Transcription Initiation Complexes. PLoS One. 11, e0149339 (2016).
  12. Albert, I., Wachi, S., Jiang, C., Pugh, B. F. GeneTrack–a genomic data processing and visualization framework. Bioinformatics. 24, 1305-1306 (2008).
  13. Guo, Y., Mahony, S., Gifford, D. K. High resolution genome wide binding event finding and motif discovery reveals transcription factor spatial binding constraints. PLoS computational biology. 8, e1002638 (2012).
  14. Bardet, A. F., et al. Identification of transcription factor binding sites from ChIP-seq data at high resolution. Bioinformatics. 29, 2705-2713 (2013).
  15. Wang, L., et al. MACE: model based analysis of ChIP-exo. Nucleic Acids Res. 42, e156 (2014).
  16. Bentley, D. R., et al. Accurate whole human genome sequencing using reversible terminator chemistry. Nature. 456, 53-59 (2008).
  17. Rhee, H. S., Pugh, B. F. ChIP-exo method for identifying genomic location of DNA-binding proteins with near-single-nucleotide accuracy. Curr Protoc Mol Biol. Chapter 21, Unit 21.24 (2012).
  18. Landt, S. G., et al. ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia. Genome Res. 22, 1813-1831 (2012).
  19. Serandour, A. A., Brown, G. D., Cohen, J. D., Carroll, J. S. Development of an Illumina-based ChIP-exonuclease method provides insight into FoxA1-DNA binding properties. Genome Biol. 14, R147 (2013).
  20. He, Q., Johnston, J., Zeitlinger, J. ChIP-nexus enables improved detection of in vivo transcription factor binding footprints. Nat Biotechnol. 33, 395-401 (2015).
check_url/fr/55016?article_type=t

Play Video

Citer Cet Article
Perreault, A. A., Venters, B. J. The ChIP-exo Method: Identifying Protein-DNA Interactions with Near Base Pair Precision. J. Vis. Exp. (118), e55016, doi:10.3791/55016 (2016).

View Video