Summary

细胞模拟支持和悬浮脂质双分子层模型的组装用于分子相互作用研究

Published: August 03, 2021
doi:

Summary

该协议描述了模拟单脂质和多脂质囊泡,支持脂质双分子层和悬浮脂质双分子层的细胞的形成。这些 体外 模型可以适应于结合各种脂质类型,并可用于研究各种分子和大分子相互作用。

Abstract

模型细胞膜是一种有用的筛选工具,其应用范围从早期药物发现到毒性研究。细胞膜是所有细胞类型的重要保护屏障,将内部细胞成分与细胞外环境分开。这些膜主要由脂质双层组成,其包含外部亲水性头基团和内疏水尾基团,以及各种蛋白质和胆固醇。脂质本身的组成和结构在调节生物功能方面起着至关重要的作用,包括细胞与细胞微环境之间的相互作用,其中可能含有药物,生物毒素和环境毒物。在这项研究中,描述了配制单脂质和多脂支持和悬浮细胞模仿脂质双分子层的方法。以前,开发了单脂磷脂酰胆碱(PC)脂质双分子层以及多脂胎盘滋养层启发的脂质双分子层,用于理解分子相互作用。在这里,将介绍实现这两种类型的双层模型的方法。对于模拟多脂双分子层的细胞,首先通过从原代细胞或细胞系中提取脂质,然后通过液相色谱-质谱(LC-MS)确定所需的脂质组成。使用该组合物,使用薄膜水合和挤出方法制备脂质囊泡,并表征其流体动力学直径和zeta电位。然后,可以使用具有耗散监测功能的石英晶体微量天平(QCM-D)和多孔膜分别用于平行人工膜渗透率测定(PAMPA)形成支撑和悬浮的脂质双分子层。代表性结果突出了 体外 细胞膜脂质双层模型的再现性和多功能性。所提出的方法可以帮助快速,方便地评估各种分子和大分子与细胞膜的相互作用机制,例如渗透,吸附和嵌入,有助于筛选候选药物和预测潜在的细胞毒性。

Introduction

细胞膜主要由磷脂,胆固醇和蛋白质组成,是所有活细胞1的重要组成部分。在脂质两亲性的驱动下,细胞膜起到保护屏障的作用,并调节细胞如何与其周围环境相互作用2。一些细胞过程依赖于膜1、2的脂质和蛋白质组成。例如,细胞膜相互作用对于有效的药物递送很重要3。药品、生物制剂、纳米材料、生物毒素和环境毒物都会影响细胞膜的完整性,从而影响细胞功能4。基于细胞膜脂质组成的体外细胞模拟膜模型的构建有可能提供简单的工具,以大大增强对这些材料对细胞的潜在影响的研究。

模型脂质双层包括脂质囊泡、支持脂质双层和悬浮脂质双层。负载脂质双分子层是磷脂细胞膜的模型,通常用于生物技术应用,其中脂质囊泡在支撑的底物材料5,6,7,8,9上破裂。用于监测双层形成的一种常用技术是具有耗散监测功能的石英晶体微量天平(QCM-D),它检查囊泡的吸附与原位8,10,11,12,13,14的体积液体性质的比较.以前,QCM-D已被用于证明在流动条件下,一旦在表面上实现磷脂酰胆碱(PC)脂质囊泡的关键囊泡覆盖,它们就会自发破裂成刚性脂质双层15。先前的工作还研究了具有不同脂质组成的支持脂质双层形成16,脂质蛋白17,18,19的掺入,并利用聚合物垫20,产生能够模仿细胞膜功能各个方面的负载脂质双层。

脂质双分子层已被用于通过改变磷脂,胆固醇和糖脂成分来模仿从亚细胞到器官水平(包括线粒体,红细胞和肝细胞膜)的各种生物屏障21。这些更复杂的多脂质囊泡可能需要额外的方法来实现囊泡破裂,这取决于脂质组成。例如,以前的研究已经利用来自丙型肝炎病毒的非结构蛋白5A的α螺旋(AH)肽,通过破坏吸附的脂质囊泡22,23来诱导双层的形成。使用这种AH肽,支持脂质双层模仿胎盘细胞先前已经形成24。支持脂质双分子层在生物医学应用中的巨大潜力已经通过分子和纳米颗粒运输25、26、环境毒物相互作用27、蛋白质组装和功能17、18、19、肽排列和插入28、29、药物筛选30和微流体平台31的研究得到了证明。

悬浮脂质双分子层已通过平行人工膜渗透率测定法(PAMPA)用于药物筛选研究,其中脂质双分子层悬浮在多孔疏水插入物32,33,34,35上。PAMPA脂质模型已经开发用于不同的生物界面,包括血脑,颊,肠和透皮界面36。通过结合支持的脂质双分子层和PAMPA技术,可以彻底研究化合物在所需组织或细胞类型的脂质成分中的吸附,渗透性和包埋。

该协议描述了 体外 细胞膜脂质双层模型的制备和应用,以研究几种分子相互作用。详细介绍了单脂和多脂支持和悬浮脂质双分子层的制备。为了形成支持的脂质双层,首先使用薄膜水合和挤出方法开发脂质囊泡,然后进行物理化学表征。讨论了使用QCM-D监测形成支持的脂质双层和制造用于PAPA的悬浮脂质膜。最后,检查用于开发更复杂的细胞模拟膜的多脂囊泡。使用两种类型的制造脂质膜,该协议演示了如何使用该工具来研究分子相互作用。总体而言,该技术构建了具有高可重复性和多功能性的模拟脂质双分子层的细胞。

Protocol

1. 发展单脂囊泡 薄膜水合法 脂质储备溶液的制备和储存注:使用氯仿的所有步骤都需要在化学通风橱中执行。氯仿应始终使用溶剂安全的碳纤维移液器吸头进行移液。含有氯仿的溶液应始终储存在玻璃瓶中。 通过将适当体积的氯仿加入含有脂质粉末的小瓶中并充分混合,制备10mg / mL脂质储备溶液。例如,将20毫升氯仿加入200毫克L-α磷脂酰胆碱(鸡蛋,鸡肉)(鸡蛋PC)。?…

Representative Results

该协议详细介绍了形成支持和悬浮脂质双层的方法(图1)。形成支持脂质双层的第一步是发育脂质囊泡。小型挤出机允许制备小体积的脂质囊泡(1 mL或更少),而大型挤出机允许在一批中制备5-50 mL脂质囊泡。由小型或大型挤出机形成的单脂质囊泡的尺寸分布如图 2A所示。由于大型挤出机使用高压N2 气体将囊泡溶液推过聚碳酸酯膜,脂质囊泡?…

Discussion

该协议允许形成脂质囊泡,支持的脂质双层和悬浮脂质双层。在这里,提出了形成这些结构的关键步骤。当形成脂质囊泡时,重要的是挤出高于脂质39的转变温度 。当低于转变温度时,脂质物理上存在于其有序的凝胶相39中。在这个有序阶段,碳氢化合物脂质尾部完全伸展,允许紧密包装,使挤出具有挑战性39。当加热到转变温度以上时,脂质…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

本材料基于美国国家科学基金会根据授予A.S.的第1942418号赠款以及授予C.M.B.H.的国家科学基金会研究生研究奖学金(第1644760号赠款)支持的工作。本材料中表达的任何意见,发现和结论或建议均为作者的观点,并不一定反映美国国家科学基金会的观点。作者感谢Noel Vera-González博士的脂质囊泡表征数据采集。作者感谢罗伯特·赫特教授(布朗大学)使用他的Zetasizer。作者感谢布朗大学质谱设施,特别是沈敦立博士在量化脂质组成方面的帮助。

Materials

1-palmitoyl-2-oleoyl-glycero-3-phosphocholine  (POPC, 16:0-18:1 PC) Avanti Polar Lipids 850457
1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-L-serine (sodium salt) (POPS, 16:0-18:1 PS) Avanti Polar Lipids 840034
1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (16:0-18:1 PE) Avanti Polar Lipids 850757
1,2-dioleoyl-sn-glycero-2-phospho-L-serine (DOPS, 18:1 PS) Avanti Polar Lipids 840035
1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC, 18:1 (Δ9-Cis) PC) Avanti Polar Lipids 850375
1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE, 18:1 (Δ9-Cis) PE) Avanti Polar Lipids 850725
1,2-distearoyl-sn-glycero-3-ethylphosphocholine (chloride salt) (18:0 EPC (Cl Salt)) Avanti Polar Lipids 890703
3 mL Luer-Loc syringes BD 309657
40 mL sample vial, amber with polytetrafluoroethylene (PTFE)/rubber liner Duran Wheaton Kimble W224605
Acetonitrile Sigma-Aldrich 271004
Alconox Fisher Scientific 50-821-781
Ammonium formate Millipore Sigma LSAC70221
C18, 3.5 um x 50 mm column, SunFire Waters  186002551
Chloroform Millipore Sigma LSAC288306
Cuvette UV Micro LCH 8.5 mm, 50 um, RPK Sarstedt 67.758.001
Di(2-ethylhexyl) phthalate (DEHP) Millipore Sigma 36735
Dimethyl sulfoxide (DMSO) Millipore Sigma LSAC472301
Ethanol Pharmco 111000200
Filter supports, 10 mm Avanti Polar Lipids 610014 Size for mini extruder
Folded capillary zeta cell Malvern Panalytical DTS1070
Isopropanol Sigma-Aldrich 190764-4L
Kimwipes Kimberly Clark 34256
L-α-phosphatidylinositol (soy) (Soy PI) Avanti Polar Lipids 840044
L-α-phosphitidylcholine (Egg, Chicken) Avanti Polar Lipids 840051
LiposoFast ® LF-50 Avestin, Inc.
Methanol Sigma-Aldrich 179337 – 4L
Mini-extruder set with holder/heating block Avanti Polar Lipids 610000
MultiScreen-IP Filter Plate, 0.45 µm, clear, sterile Millipore Sigma MAIPS4510 for PAMPA studies
Nitrogen gas, ultrapure TechAir NI T5.0
Nuclepore hydrophilic membranes, polycarbonate, 19 mm, 0.1 um Whatman 800309 Size for mini extruder
Nuclepore hydrophilic membranes, polycarbonate, 25 mm, 0.1 um Whatman 110605 Size for large extruder
Parafilm Bemis PM999
Phosphate buffer saline (PBS), 10x Genesee Scienfitic 25-507X Dilute to 1x
Qsoft 401 software Biolin Scientific
Quartz Crystal Microbalance with Dissipation Q-Sense Analyzer Biolin Scientific
Scintillation vials, borosilicate glass vials, 20 mL Duran Wheaton Kimble 986561
Silicon Dioxide, thin QSensors Biolin Scientific QSX 303
Sodium chloride (NaCl) Millipore Sigma LSACS5886
Sodium dodecyl sulfate (SDS) Fisher Scientific BP166-100
Solvent Safe pipette tips Sigma-Aldrich S8064
Sphingomyelin (Egg, Chicken) Avanti Polar Lipids 860061
Trizma base Millipore Sigma LSACT1503
Trypsin-ethylenediaminetretaacetic acid Caisson Labs TRL01-6X100ML
Whatman drain disc, 25 mm Whatman 230600 Size for large extruder
Zetasizer ZS90 Malvern Panalytical
Zetasizer 7.01 software Malvern Panalytical

Riferimenti

  1. Lucio, M., Lima, J. L. F. C., Reis, S. Drug-Membrane Interactions: Significance for Medicinal Chemistry. Current Medicinal Chemistry. 17 (17), 1795-1809 (2010).
  2. Mayne, C. G., et al. The cellular membrane as a mediator for small molecule interaction with membrane proteins. Biochimica et Biophysica Acta – Biomembranes. 1858 (10), 2290-2304 (2016).
  3. Bunea, A. I., Harloff-Helleberg, S., Taboryski, R., Nielsen, H. M. Membrane interactions in drug delivery: Model cell membranes and orthogonal techniques. Advances in Colloid and Interface Science. 281, 102177 (2020).
  4. Peetla, C., Stine, A., Labhasetwar, V. Biophysical interactions with model lipid membranes: Applications in drug discovery and drug delivery. Molecular Pharmaceutics. 6 (5), 1264-1276 (2009).
  5. Richter, R., Mukhopadhyay, A., Brisson, A. Pathways of Lipid Vesicle Deposition on Solid Surfaces: A Combined QCM-D and AFM Study. Biophysical Journal. 85 (5), 3035-3047 (2003).
  6. Lind, T. K., Cárdenas, M., Wacklin, H. P. Formation of supported lipid bilayers by vesicle fusion: Effect of deposition temperature. Langmuir. 30 (25), 7259-7263 (2014).
  7. Mingeot-Leclercq, M. -. P., Deleu, M., Brasseur, R., Dufrêne, Y. F. Atomic force microscopy of supported lipid bilayers. Nature protocols. 3 (10), 1654-1659 (2008).
  8. Richter, R. P., Bérat, R., Brisson, A. R. Formation of solid-supported lipid bilayers: an integrated view. Langmuir the ACS journal of surfaces and colloids. 22 (8), 3497-3505 (2006).
  9. Chan, Y. -. H. M., Boxer, S. G. Model membrane systems and their applications. Current Opinion in Chemical Biology. 11 (6), 581-587 (2007).
  10. Edvardsson, M., Svedhem, S., Wang, G., Richter, R., Rodahl, M., Kasemo, B. QCM-D and reflectometry instrument: applications to supported lipid structures and their biomolecular interactions. Analytical chemistry. 81 (1), 349-361 (2009).
  11. Rodahl, M., et al. Simultaneous frequency and dissipation factor QCM measurements of biomolecular adsorption and cell adhesion. Faraday Discussions. 107, 229-246 (1997).
  12. Keller, C. A., Glasmästar, K., Zhdanov, V. P., Kasemo, B. Formation of Supported Membranes from Vesicles. Physical Review Letters. 84 (23), 5443-5446 (2000).
  13. Keller, C. A., Kasemo, B. Surface specific kinetics of lipid vesicle adsorption measured with a quartz crystal microbalance. Biophysical journal. 75 (3), 1397-1402 (1998).
  14. Cho, N. -. J., Frank, C. W., Kasemo, B., Höök, F. Quartz crystal microbalance with dissipation monitoring of supported lipid bilayers on various substrates. Nature protocols. 5 (6), 1096-1106 (2010).
  15. Bailey, C. M., Tripathi, A., Shukla, A. Effects of Flow and Bulk Vesicle Concentration on Supported Lipid Bilayer Formation. Langmuir. 33 (43), 11986-11997 (2017).
  16. van Meer, G., Voelker, D. R., Feigenson, G. W. Membrane lipids: where they are and how they behave. Nature reviews. Molecular cell biology. 9 (2), 112-124 (2008).
  17. Rossi, C., Chopineau, J. Biomimetic tethered lipid membranes designed for membrane-protein interaction studies. European Biophysics Journal. 36 (8), 955-965 (2007).
  18. Hatty, C. R., et al. Investigating the interactions of the 18 kDa translocator protein and its ligand PK11195 in planar lipid bilayers. Biochimica et Biophysica Acta – Biomembranes. 1838 (3), 1019-1030 (2014).
  19. Min, Y., Kristiansen, K., Boggs, J. M., Husted, C., Zasadzinski, J. a., Israelachvili, J. Interaction forces and adhesion of supported myelin lipid bilayers modulated by myelin basic protein. Proceedings of the National Academy of Sciences of the United States of America. 106 (9), 3154-3159 (2009).
  20. Heath, G. R., et al. Layer-by-layer assembly of supported lipid bilayer poly-l-lysine multilayers. Biomacromolecules. 17 (1), 324-335 (2016).
  21. Alberts, B., Lewis, J. The Lipid Bilayer. Molecular Biology of the Cell. , 6-11 (2013).
  22. Cho, N. J., Wang, G., Edvardsson, M., Glenn, J. S., Hook, F., Frank, C. W. Alpha-helical peptide-induced vesicle rupture revealing new insight into the vesicle fusion process as monitored in situ by quartz crystal microbalance-dissipation and reflectometry. Analytical Chemistry. 81 (12), 4752-4761 (2009).
  23. Hardy, G. J., Nayak, R., Munir Alam, S., Shapter, J. G., Heinrich, F., Zauscher, S. Biomimetic supported lipid bilayers with high cholesterol content formed by α-helical peptide-induced vesicle fusion. Journal of Materials Chemistry. 22 (37), 19506-19513 (2012).
  24. Bailey-Hytholt, C. M., Shen, T. L., Nie, B., Tripathi, A., Shukla, A. Placental Trophoblast-Inspired Lipid Bilayers for Cell-Free Investigation of Molecular Interactions. ACS Applied Materials and Interfaces. 12 (28), 31099-31111 (2020).
  25. Domenech, O., Francius, G., Tulkens, P. M., Van Bambeke, F., Dufrêne, Y., Mingeot-Leclercq, M. -. P. Interactions of oritavancin, a new lipoglycopeptide derived from vancomycin, with phospholipid bilayers: Effect on membrane permeability and nanoscale lipid membrane organization. Biochimica et biophysica acta. 1788 (9), 1832-1840 (2009).
  26. Bailey, C. M., Kamaloo, E., Waterman, K. L., Wang, K. F., Nagarajan, R., Camesano, T. a. Size dependence of gold nanoparticle interactions with a supported lipid bilayer: A QCM-D study. Biophysical Chemistry. 203-204, 51-61 (2015).
  27. Bailey-Hytholt, C. M., Puranik, T., Tripathi, A., Shukla, A. Investigating interactions of phthalate environmental toxicants with lipid structures. Colloids and Surfaces B: Biointerfaces. 190, 110923 (2020).
  28. Wang, K. F., Nagarajan, R., Camesano, T. A. Antimicrobial peptide alamethicin insertion into lipid bilayer: a QCM-D exploration. Colloids and surfaces. B, Biointerfaces. 116, 472-481 (2014).
  29. Lozeau, L. D., Rolle, M. W., Camesano, T. A. A QCM-D study of the concentration- and time-dependent interactions of human LL37 with model mammalian lipid bilayers. Colloids and Surfaces B: Biointerfaces. 167 (1), 229-238 (2018).
  30. Kongsuphol, P., Fang, K. B., Ding, Z. Lipid bilayer technologies in ion channel recordings and their potential in drug screening assay. Sensors and Actuators B: Chemical. 185, 530-542 (2013).
  31. Ren, X., et al. Design, fabrication, and characterization of archaeal tetraether free-standing planar membranes in a PDMS-and PCB-based fluidic platform. ACS Applied Materials & Interfaces. 6 (15), 12618-12628 (2014).
  32. Seo, P. R., Teksin, Z. S., Kao, J. P. Y., Polli, J. E. Lipid composition effect on permeability across PAMPA. European Journal of Pharmaceutical Sciences. 29 (3-4), 259-268 (2006).
  33. Avdeef, A. The rise of PAMPA. Expert Opinion on Drug Metabolism & Toxicology. 1 (2), 325-342 (2005).
  34. Avdeef, A., Artursson, P., Neuhoff, S., Lazorova, L., Gråsjö, J., Tavelin, S. Caco-2 permeability of weakly basic drugs predicted with the Double-Sink PAMPA method. European Journal of Pharmaceutical Sciences. 24 (4), 333-349 (2005).
  35. Campbell, S. D., Regina, K. J., Kharasch, E. D. Significance of Lipid Composition in a Blood-Brain Barrier-Mimetic PAMPA Assay. Journal of Biomolecular Screening. 19 (3), 437-444 (2014).
  36. Berben, P., et al. Drug permeability profiling using cell-free permeation tools: Overview and applications. European Journal of Pharmaceutical Sciences. 119, 219-233 (2018).
  37. Schmidt, D., Lynch, J. Evaluation of the reproducibility of Parallel Artificial Membrane Permation Assays (PAMPA). EMD Millipore Corporation. , (2020).
  38. Bligh, E. G., Dyer, W. J. A Rapid Method of Total Lipid Extraction and Purification. Canadian Journal of Biochemistry and Physiology. 37 (8), 911-917 (1959).
  39. Nayar, R., Hope, M. J., Cullis, P. R. Generation of large unilamellar vesicles from long-chain saturated phosphatidylcholines by extrusion technique. BBA – Biomembranes. 986 (2), 200-206 (1989).
  40. Lind, T. K., Skida, M. W. A., Cárdenas, M. Formation and Characterization of Supported Lipid Bilayers Composed of Phosphatidylethanolamine and Phosphatidylglycerol by Vesicle Fusion, a Simple but Relevant Model for Bacterial Membranes. ACS Omega. 4 (6), 10687-10694 (2019).
  41. Berben, P., et al. Drug permeability profiling using cell-free permeation tools: Overview and applications. European Journal of Pharmaceutical Sciences. 119, 219-233 (2018).
  42. Bermejo, M., et al. PAMPA-a drug absorption in vitro model: 7. Comparing rat in situ, Caco-2, and PAMPA permeability of fluoroquinolones. European Journal of Pharmaceutical Sciences. 21 (4), 429-441 (2004).
  43. Kerns, E. H., Di, L., Petusky, S., Farris, M., Ley, R., Jupp, P. Application of parallel artificial membrane permeability assay and Caco-2 permeability. Journal of Pharmaceutical Sciences. 93 (6), 1440-1453 (2004).
  44. Masungi, C., et al. Parallel artificial membrane permeability assay (PAMPA) combined with a 10-day multiscreen Caco-2 cell culture as a tool for assessing new drug candidates. Pharmazie. 63 (3), 194-199 (2008).
  45. Vera-González, N., et al. Anidulafungin liposome nanoparticles exhibit antifungal activity against planktonic and biofilm Candida albicans. Journal of Biomedical Materials Research – Part A. 108 (11), 2263-2276 (2020).
  46. Barenholz, Y., Gibbes, D., Litman, B. J., Goll, J., Thompson, T. E., Carlson, F. D. A simple method for the preparation of homogeneous phospholipid vesicles. Biochimica. 16 (1), 2806-2810 (1977).
  47. El Kirat, K., Morandat, S., Dufrêne, Y. F. Nanoscale analysis of supported lipid bilayers using atomic force microscopy. Biochimica et Biophysica Acta – Biomembranes. 1798 (4), 750-765 (2010).
  48. Tawa, K., Morigaki, K. Substrate-supported phospholipid membranes studied by surface plasmon resonance and surface plasmon fluorescence spectroscopy. Biophysical Journal. 89 (4), 2750-2758 (2005).
  49. Koenig, B. W., et al. Neutron Reflectivity and Atomic Force Microscopy Studies of a Lipid Bilayer in Water Adsorbed to the Surface of a Silicon Single Crystal. Langmuir. 12 (5), 1343-1350 (1996).
  50. Lind, T. K., Cárdenas, M. Understanding the formation of supported lipid bilayers via vesicle fusion-A case that exemplifies the need for the complementary method approach (Review). Biointerphases. 11 (2), 020801 (2016).
  51. Castellana, E. T., Cremer, P. S. Solid supported lipid bilayers: From biophysical studies to sensor design. Surface Science Reports. 61 (10), 429-444 (2006).
  52. Isaksson, S., et al. Protein-Containing Lipid Bilayers Intercalated with Size-Matched Mesoporous Silica Thin Films. Nano Letters. 17 (1), 476-485 (2017).

Play Video

Citazione di questo articolo
Bailey-Hytholt, C. M., LaMastro, V., Shukla, A. Assembly of Cell Mimicking Supported and Suspended Lipid Bilayer Models for the Study of Molecular Interactions. J. Vis. Exp. (174), e62599, doi:10.3791/62599 (2021).

View Video