Summary

基因功能分析和可视化的纤毛产生的流体流动的在枯否囊泡中

Published: March 31, 2013
doi:

Summary

纤毛产生的流体流动在枯否囊泡(KV)控制的斑马鱼胚胎的左右模式。在这里,我们描述了一种技术,调节基因的功能,特别是在KV细胞。此外,我们展示了如何提供KV可视化流体流动的荧光珠。

Abstract

内部器官,如心脏,大脑和肠道左右(LR)为他们的正常功能是至关重要的不对称性。运动纤毛参与建立LR的不对称性在脊椎动物胚胎,包括老鼠,青蛙和斑马鱼2-6。这些'LR的纤毛'产生不对称的流体流动是必要的,以触发一个保守的不对称交点(TGF-β超家族)的信号级联在左侧侧板中胚层,这被认为是提供开发机关7 LR构图信息。因此,理解机制LR构图,它是必不可少的,以确定基因调节的LR纤毛细胞的组织,运动和长度LR纤毛和他们的能力,以产生强大的非对称流。

在斑马鱼胚胎中,LR纤毛位于巨噬泡(KV)2,4,5。 KV是由一个单一的层monociliated上皮细胞,附上一个充满液体的腔。 KV是来自一组被称为的背先行者细胞(DFCS)迁移外包阶段在背胚率在8,9〜20-30细胞的命运映射。在早期的体节阶段,DFC的集群,并分化成纤毛上皮细胞,形成KV中的胚胎10,11 tailbud。结合的光学透明度和快速发展的斑马鱼胚胎斑马鱼KV一个很好的模型系统来研究,LR纤毛细胞能够识别和跟踪八间指定流感诊所求诊。

有趣的是,DFC / KV细胞谱系的祖细胞保留蛋黄细胞的细胞质之间的桥梁,受精后4小时(HPF)的,而蛋黄细胞和其他接近8高倍视野2后的胚胎干细胞的细胞质之间的桥梁。利用这些细胞的桥梁,我们开发了一个特定阶段的喷油策略提供吗啉代寡otides(密苏里州)专门DFC的和击倒的目标基因的功能,在这些细胞中12。这技术创造嵌合体胚胎基因的功能被撞倒在发展的背景下,野生型胚胎的DFC / KV血统的。在KV,我们要分析非对称流体流动注射荧光微球到KV珠流明,并记录运动时,通过电视显微镜2。流体流动是易于可视化和可量化的跟踪珠位移随着时间的推移。

在这里,使用特定的阶段,的DFC-针对性的基因敲除技术和注射荧光微球KV可视化流程,我们提出了一个协议,提供了一个有效的方法来描述一个特定基因的作用在KV的发育和功能。

Protocol

概述特定阶段的斑马鱼胚胎注射液反义吗啉代寡核苷酸(MO),结合到靶mRNA和蛋白表达,转录干扰,被广泛用于基因敲除(损失函数)的研究斑马鱼13,14。基因的工具,LLC提供的MO,无论是羧基发出绿色荧光的或丽丝胺(发出红色荧光)的检测MO注射的胚胎中,使用荧光显微镜的标签。通过注入MO到蛋黄细胞在斑马鱼发育的不同阶段中,它能够提供的MO胚胎的具体的室中(…

Representative Results

图1给出了一个流程图,用于测试基因功能DFC / KV细胞和如何引入荧光珠的可视化流体流的喷射策略阶段特异性的MO注射提供了一种有用的方法来分析基因功能的特定的室中的胚胎。在KV。在成功阶段特异性注射胚胎的是,荧光的MO分布示意性地示出在图2中,在图1D-F和在活胚胎。一个不成功的MO注射,在其中的MO仍然在蛋黄细胞聚集, 如图2D</…

Discussion

使用特定阶段的目标MO注射到DFC / KV细胞系是一个非常有用的方法来研究基因功能的细胞自主性,避免多效性所造成的全球基因敲除的表型。然而,这些注射可以在技术上具有挑战性。注射液的MO之间的256细胞和1000细胞的阶段,可能会导致在三种可能的结果:1)在MO仍然聚集在注射部位,2)的MO整个蛋黄扩散并进入DFC / KV细胞或3)的MO整个蛋黄,进入DFC / KV细胞和胚胎干细胞的扩散。因此,在这个?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

我们感谢菲奥娜优良的实验室支持和斑马鱼的保健福利。这项工作是一个AHA博士前奖学金GW(11PRE5730027)的和NHLBI补助金的HJY(R01HL66292)和JDA(R01HL095690)。

Materials

Name of Reagent/Material Company Catalogue Number
Standard Control oligo-Lissamine tagged Gene Tools, LLC
Custom Rock2b morpholino oligo Gene Tools, LLC
Fluoresbrite Multifluorescent 0.5 micron Microspheres Polysciences, Inc. 24054

References

  1. Sutherland, M. J., Ware, S. M. Disorders of left-right asymmetry: heterotaxy and situsinversus. Am. J. Med. Genet. C Semin. Med. Genet. 151C (4), 307-317 (2009).
  2. Essner, J. J., Amack, J. D., Nyholm, M. K., Harris, E. B., Yost, H. J. Kupffer’s vesicle is a ciliated organ of asymmetry in the zebrafish embryo that initiates left-right development of the brain, heart and gut. Development. 132 (6), 1247-1260 (2005).
  3. Nonaka, S., et al. Randomization of left-right asymmetry due to loss of nodal cilia generating leftward flow of extraembryonic fluid in mice lacking KIF3B motor protein. Cell. 95 (6), 829-837 (1998).
  4. Essner, J. J., et al. Conserved function for embryonic nodal cilia. Nature. 418 (6893), 37-38 (2002).
  5. Kramer-Zucker, A. G., et al. Cilia-driven fluid flow in the zebrafish pronephros, brain and Kupffer’s vesicle is required for normal organogenesis. Development. 132 (8), 1907-1921 (2005).
  6. Schweickert, A., et al. Cilia-driven leftward flow determines laterality in Xenopus. Curr. Biol. 17 (1), 60-66 (2007).
  7. Tabin, C. J. The key to left-right asymmetry. Cell. 127 (1), 27-32 (2006).
  8. Cooper, M. S., D’Amico, L. A. A cluster of noninvolutingendocytic cells at the margin of the zebrafish blastoderm marks the site of embryonic shield formation. Dev. Biol. 180 (1), 184-198 (1996).
  9. Melby, A. E., Warga, R. M., Kimmel, C. B. Specification of cell fates at the dorsal margin of the zebrafish gastrula. Development. 122 (7), 2225-2237 (1996).
  10. Amack, J. D., Wang, X., Yost, H. J. Two T-box genes play independent and cooperative roles to regulate morphogenesis of ciliated Kupffer’s vesicle in zebrafish. Dev. Biol. 310 (2), 196-210 (2007).
  11. Oteiza, P., Koppen, M., Concha, M. L., Heisenberg, C. P. Origin and shaping of the laterality organ in zebrafish. Development. 135 (16), 2807-2813 (2008).
  12. Amack, J. D., Yost, H. J. The T box transcription factor no tail in ciliated cells controls zebrafish left-right asymmetry. Curr. Biol. 14 (8), 685-690 (2004).
  13. Nasevicius, A., Ekker, S. C. Effective targeted gene ‘knockdown’ in zebrafish. Nat. Genet. 26 (2), 216-220 (2000).
  14. Bill, B. R., Petzold, A. M., Clark, K. J., Schimmenti, L. A., Ekker, S. C. A primer for morpholino use in zebrafish. Zebrafish. 6 (1), 69-77 (2009).
  15. Kimmel, C. B., Law, R. D. Cell lineage of zebrafish blastomeres. I. Cleavage pattern and cytoplasmic bridges between cells. Dev. Biol. 108 (1), 78-85 (1985).
  16. Arrington, C. B., Yost, H. J. Extra-embryonic syndecan 2 regulates organ primordia migration and fibrillogenesis throughout the zebrafish embryo. Development. 136 (18), 3143-3152 (2009).
  17. Caron, A., Xu, X., Lin, X. Wnt/beta-catenin signaling directly regulates Foxj1 expression and ciliogenesis in zebrafish Kupffer’s vesicle. Development. 139 (3), 514-524 (2012).
  18. Wang, G., et al. The Rho kinase Rock2b establishes anteroposterior asymmetry of the ciliated Kupffer’s vesicle in zebrafish. Development. 138 (1), 45-54 (2011).
  19. Aamar, E., Dawid, I. B. Sox17 and chordin are required for formation of Kupffer’s vesicle and left-right asymmetry determination in zebrafish. Dev. Dyn. 239 (11), 2980-2988 (2010).
  20. Neugebauer, J. M., Amack, J. D., Peterson, A. G., Bisgrove, B. W., Yost, H. J. FGF signalling during embryo development regulates cilia length in diverse epithelia. Nature. 458 (7238), 651-654 (2009).
  21. Schneider, I., et al. Zebrafish Nkd1 promotes Dvl degradation and is required for left-right patterning. Dev. Biol. 348 (1), 22-33 (2010).
  22. Matsui, T., et al. Canopy1, a positive feedback regulator of FGF signaling, controls progenitor cell clustering during Kupffer’s vesicle organogenesis. Proc. Natl. Acad. Sci. U.S.A. 108 (24), 9881-9886 (2011).
  23. Shu, X., et al. Na,K-ATPase alpha2 and Ncx4a regulate zebrafish left-right patterning. Development. 134 (10), 1921-1930 (2007).
  24. Esguerra, C. V. Ttrap is an essential modulator of Smad3-dependent Nodal signaling during zebrafish gastrulation and left-right axis determination. Development. 134 (24), 4381-4393 (2007).
  25. Rosen, J. N., Sweeney, M. F., Mably, J. D. Microinjection of Zebrafish Embryos to Analyze Gene Function. J. Vis. Exp. (25), e1115 (2009).
  26. Yuan, S., Sun, Z. Microinjection of mRNA and Morpholino Antisense Oligonucleotides in Zebrafish Embryos. J. Vis. Exp. (27), e1113 (2009).
  27. Molina, G., et al. Zebrafish chemical screening reveals an inhibitor of Dusp6 that expands cardiac cell lineages. Nat. Chem. Biol. 5 (9), 680-687 (2009).
  28. Kimmel, C. B., Ballard, W. W., Kimmel, S. R., Ullmann, B., Schilling, T. F. Stages of embryonic development of the zebrafish. Dev. Dyn. 203 (3), 253-310 (1995).
  29. Schneider, I., Houston, D. W., Rebagliati, M. R., Slusarski, D. C. Calcium fluxes in dorsal forerunner cells antagonize beta-catenin and alter left-right patterning. Development. 135 (1), 75-84 (2008).
  30. Clement, A., Solnica-Krezel, L., Gould, K. L. The Cdc14B phosphatase contributes to ciliogenesis in zebrafish. Development. 138 (2), 291-302 (2011).
  31. Matsui, T., Bessho, Y. Left-right asymmetry in zebrafish. Cell Mol. Life Sci. , (2012).
check_url/kr/50038?article_type=t

Play Video

Cite This Article
Wang, G., Yost, H. J., Amack, J. D. Analysis of Gene Function and Visualization of Cilia-Generated Fluid Flow in Kupffer’s Vesicle. J. Vis. Exp. (73), e50038, doi:10.3791/50038 (2013).

View Video