Summary

जीन और Kupffer पुटिका में सिलिया उत्पन्न द्रव प्रवाह की विज़ुअलाइज़ेशन समारोह का विश्लेषण

Published: March 31, 2013
doi:

Summary

सिलिया उत्पन्न Kupffer पुटिका में द्रव का प्रवाह (केवी) zebrafish भ्रूण के बाएँ सही patterning नियंत्रित करता है. यहाँ, हम एक केवी कोशिकाओं में जीन समारोह विशेष रूप से मिलाना तकनीक का वर्णन. इसके अतिरिक्त, हम बताते हैं कि कैसे केवी में फ्लोरोसेंट मोती देने के लिए तरल पदार्थ का प्रवाह कल्पना.

Abstract

Internal organs such as the heart, brain, and gut develop left-right (LR) asymmetries that are critical for their normal functions1. Motile cilia are involved in establishing LR asymmetry in vertebrate embryos, including mouse, frog, and zebrafish2-6. These ‘LR cilia’ generate asymmetric fluid flow that is necessary to trigger a conserved asymmetric Nodal (TGF-β superfamily) signaling cascade in the left lateral plate mesoderm, which is thought to provide LR patterning information for developing organs7. Thus, to understand mechanisms underlying LR patterning, it is essential to identify genes that regulate the organization of LR ciliated cells, the motility and length of LR cilia and their ability to generate robust asymmetric flow.

In the zebrafish embryo, LR cilia are located in Kupffer’s vesicle (KV)2,4,5. KV is comprised of a single layer of monociliated epithelial cells that enclose a fluid-filled lumen. Fate mapping has shown that KV is derived from a group of ~20-30 cells known as dorsal forerunner cells (DFCs) that migrate at the dorsal blastoderm margin during epiboly stages8,9. During early somite stages, DFCs cluster and differentiate into ciliated epithelial cells to form KV in the tailbud of the embryo10,11. The ability to identify and track DFCs—in combination with optical transparency and rapid development of the zebrafish embryo—make zebrafish KV an excellent model system to study LR ciliated cells.

Interestingly, progenitors of the DFC/KV cell lineage retain cytoplasmic bridges between the yolk cell up to 4 hr post-fertilization (hpf), whereas cytoplasmic bridges between the yolk cell and other embryonic cells close after 2 hpf8. Taking advantage of these cytoplasmic bridges, we developed a stage-specific injection strategy to deliver morpholino oligonucleotides (MO) exclusively to DFCs and knockdown the function of a targeted gene in these cells12. This technique creates chimeric embryos in which gene function is knocked down in the DFC/KV lineage developing in the context of a wild-type embryo. To analyze asymmetric fluid flow in KV, we inject fluorescent microbeads into the KV lumen and record bead movement using videomicroscopy2. Fluid flow is easily visualized and can be quantified by tracking bead displacement over time.

Here, using the stage-specific DFC-targeted gene knockdown technique and injection of fluorescent microbeads into KV to visualize flow, we present a protocol that provides an effective approach to characterize the role of a particular gene during KV development and function.

Protocol

स्टेज विशिष्ट Zebrafish भ्रूण इंजेक्शन का अवलोकन Antisense morpholino (एमओ) oligonucleotides, जो एक लक्षित mRNA करने के लिए बाध्य है और उस प्रतिलिपि से प्रोटीन अभिव्यक्ति को बाधित, जीन पछाड़ना में व्यापक रूप से उपयोग किया जात…

Representative Results

स्टेज विशिष्ट MO इंजेक्शन भ्रूण के विशेष डिब्बों में जीन समारोह का विश्लेषण के लिए एक उपयोगी दृष्टिकोण चित्रा 1 प्रदान करते हैं. इंजेक्शन डीएफसी / केवी कोशिकाओं में जीन समारोह का परीक्षण करने के ल…

Discussion

मंच विशिष्ट इंजेक्शन का उपयोग करने के लिए सेल / डीएफसी केवी वंश एमओ को लक्षित करने के लिए सेल जीन समारोह की स्वायत्तता का अध्ययन करने और pleiotropic phenotypes वैश्विक जीन पछाड़ना की वजह से से बचने के लिए एक उपयोगी दृ?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

हम उत्कृष्ट प्रयोगशाला सहायता और zebrafish देखभाल के लिए Fiona Foley धन्यवाद. यह काम एक अहा गिनीकृमि predoctoral फेलोशिप (11PRE5730027) और (R01HL66292) HJY और प्राधिकरण (R01HL095690) NHLBI अनुदान समर्थित किया गया.

Materials

Name of Reagent/Material Company Catalogue Number
Standard Control oligo-Lissamine tagged Gene Tools, LLC
Custom Rock2b morpholino oligo Gene Tools, LLC
Fluoresbrite Multifluorescent 0.5 micron Microspheres Polysciences, Inc. 24054

References

  1. Sutherland, M. J., Ware, S. M. Disorders of left-right asymmetry: heterotaxy and situsinversus. Am. J. Med. Genet. C Semin. Med. Genet. 151C (4), 307-317 (2009).
  2. Essner, J. J., Amack, J. D., Nyholm, M. K., Harris, E. B., Yost, H. J. Kupffer’s vesicle is a ciliated organ of asymmetry in the zebrafish embryo that initiates left-right development of the brain, heart and gut. Development. 132 (6), 1247-1260 (2005).
  3. Nonaka, S., et al. Randomization of left-right asymmetry due to loss of nodal cilia generating leftward flow of extraembryonic fluid in mice lacking KIF3B motor protein. Cell. 95 (6), 829-837 (1998).
  4. Essner, J. J., et al. Conserved function for embryonic nodal cilia. Nature. 418 (6893), 37-38 (2002).
  5. Kramer-Zucker, A. G., et al. Cilia-driven fluid flow in the zebrafish pronephros, brain and Kupffer’s vesicle is required for normal organogenesis. Development. 132 (8), 1907-1921 (2005).
  6. Schweickert, A., et al. Cilia-driven leftward flow determines laterality in Xenopus. Curr. Biol. 17 (1), 60-66 (2007).
  7. Tabin, C. J. The key to left-right asymmetry. Cell. 127 (1), 27-32 (2006).
  8. Cooper, M. S., D’Amico, L. A. A cluster of noninvolutingendocytic cells at the margin of the zebrafish blastoderm marks the site of embryonic shield formation. Dev. Biol. 180 (1), 184-198 (1996).
  9. Melby, A. E., Warga, R. M., Kimmel, C. B. Specification of cell fates at the dorsal margin of the zebrafish gastrula. Development. 122 (7), 2225-2237 (1996).
  10. Amack, J. D., Wang, X., Yost, H. J. Two T-box genes play independent and cooperative roles to regulate morphogenesis of ciliated Kupffer’s vesicle in zebrafish. Dev. Biol. 310 (2), 196-210 (2007).
  11. Oteiza, P., Koppen, M., Concha, M. L., Heisenberg, C. P. Origin and shaping of the laterality organ in zebrafish. Development. 135 (16), 2807-2813 (2008).
  12. Amack, J. D., Yost, H. J. The T box transcription factor no tail in ciliated cells controls zebrafish left-right asymmetry. Curr. Biol. 14 (8), 685-690 (2004).
  13. Nasevicius, A., Ekker, S. C. Effective targeted gene ‘knockdown’ in zebrafish. Nat. Genet. 26 (2), 216-220 (2000).
  14. Bill, B. R., Petzold, A. M., Clark, K. J., Schimmenti, L. A., Ekker, S. C. A primer for morpholino use in zebrafish. Zebrafish. 6 (1), 69-77 (2009).
  15. Kimmel, C. B., Law, R. D. Cell lineage of zebrafish blastomeres. I. Cleavage pattern and cytoplasmic bridges between cells. Dev. Biol. 108 (1), 78-85 (1985).
  16. Arrington, C. B., Yost, H. J. Extra-embryonic syndecan 2 regulates organ primordia migration and fibrillogenesis throughout the zebrafish embryo. Development. 136 (18), 3143-3152 (2009).
  17. Caron, A., Xu, X., Lin, X. Wnt/beta-catenin signaling directly regulates Foxj1 expression and ciliogenesis in zebrafish Kupffer’s vesicle. Development. 139 (3), 514-524 (2012).
  18. Wang, G., et al. The Rho kinase Rock2b establishes anteroposterior asymmetry of the ciliated Kupffer’s vesicle in zebrafish. Development. 138 (1), 45-54 (2011).
  19. Aamar, E., Dawid, I. B. Sox17 and chordin are required for formation of Kupffer’s vesicle and left-right asymmetry determination in zebrafish. Dev. Dyn. 239 (11), 2980-2988 (2010).
  20. Neugebauer, J. M., Amack, J. D., Peterson, A. G., Bisgrove, B. W., Yost, H. J. FGF signalling during embryo development regulates cilia length in diverse epithelia. Nature. 458 (7238), 651-654 (2009).
  21. Schneider, I., et al. Zebrafish Nkd1 promotes Dvl degradation and is required for left-right patterning. Dev. Biol. 348 (1), 22-33 (2010).
  22. Matsui, T., et al. Canopy1, a positive feedback regulator of FGF signaling, controls progenitor cell clustering during Kupffer’s vesicle organogenesis. Proc. Natl. Acad. Sci. U.S.A. 108 (24), 9881-9886 (2011).
  23. Shu, X., et al. Na,K-ATPase alpha2 and Ncx4a regulate zebrafish left-right patterning. Development. 134 (10), 1921-1930 (2007).
  24. Esguerra, C. V. Ttrap is an essential modulator of Smad3-dependent Nodal signaling during zebrafish gastrulation and left-right axis determination. Development. 134 (24), 4381-4393 (2007).
  25. Rosen, J. N., Sweeney, M. F., Mably, J. D. Microinjection of Zebrafish Embryos to Analyze Gene Function. J. Vis. Exp. (25), e1115 (2009).
  26. Yuan, S., Sun, Z. Microinjection of mRNA and Morpholino Antisense Oligonucleotides in Zebrafish Embryos. J. Vis. Exp. (27), e1113 (2009).
  27. Molina, G., et al. Zebrafish chemical screening reveals an inhibitor of Dusp6 that expands cardiac cell lineages. Nat. Chem. Biol. 5 (9), 680-687 (2009).
  28. Kimmel, C. B., Ballard, W. W., Kimmel, S. R., Ullmann, B., Schilling, T. F. Stages of embryonic development of the zebrafish. Dev. Dyn. 203 (3), 253-310 (1995).
  29. Schneider, I., Houston, D. W., Rebagliati, M. R., Slusarski, D. C. Calcium fluxes in dorsal forerunner cells antagonize beta-catenin and alter left-right patterning. Development. 135 (1), 75-84 (2008).
  30. Clement, A., Solnica-Krezel, L., Gould, K. L. The Cdc14B phosphatase contributes to ciliogenesis in zebrafish. Development. 138 (2), 291-302 (2011).
  31. Matsui, T., Bessho, Y. Left-right asymmetry in zebrafish. Cell Mol. Life Sci. , (2012).
check_url/kr/50038?article_type=t

Play Video

Cite This Article
Wang, G., Yost, H. J., Amack, J. D. Analysis of Gene Function and Visualization of Cilia-Generated Fluid Flow in Kupffer’s Vesicle. J. Vis. Exp. (73), e50038, doi:10.3791/50038 (2013).

View Video