Summary

用于打印 3D 细胞-拉丹胰腺组织构造的胰腺组织衍生细胞外基质生物墨水

Published: December 13, 2019
doi:

Summary

去细胞化细胞外基质(dECM)可以提供合适的微环境线索,以在工程结构中重述目标组织的固有功能。本文阐述了胰腺组织去细胞化、胰腺组织衍生dECM生物油墨评价以及利用生物印刷技术生成3D胰腺组织构造的方案。

Abstract

胰腺胰岛移植是1型糖尿病患者有低血糖和继发性并发症的一种有前途的治疗方法。然而,胰岛移植仍然有几个限制,如移植胰岛由于贫困胰岛移植和恶劣环境而存活率低。此外,从人类多能干细胞中分化的胰岛素生成细胞具有有限的分泌足够的激素的能力,这些激素可以调节血糖水平;因此,迫切需要通过培养具有适当微环境线索的细胞来改善成熟。在本文中,我们阐明了制备胰腺组织衍生的细胞外基质 (pdECM) 生物墨水的协议,以提供一个可增加胰腺胰岛葡萄糖敏感性的有益微环境,然后描述使用基于微糊精的生物印版技术生成3D胰腺组织构建的过程。

Introduction

最近,胰腺胰岛移植被认为是对1型糖尿病患者的一种有前途的治疗方法。该手术的相对安全性和最小侵入性是这种治疗1的很大优势。然而,它有一些限制,如分离胰岛的低成功率和免疫抑制药物的副作用。此外,由于恶劣的环境2,移植后移植胰岛的数量稳步减少。各种生物相容性材料,如藻酸盐、胶原蛋白、聚(乳胶共甘油酸)或聚乙烯乙二醇(PEG)已应用于胰岛移植,以克服这些困难。

3D细胞打印技术以其巨大的潜力和高性能在组织工程中不断涌现。不用说,生物油墨被称为提供合适的微环境,并促成印刷组织结构中细胞过程改善的重要成分。大量的剪切变薄水凝胶,如纤维蛋白、藻酸盐和胶原蛋白被广泛用作生物油墨。然而,与原生组织3中的细胞外基质(ECM)相比,这些材料表现出缺乏结构、化学、生物和机械的复杂性。微环境提示,如胰岛和ECM之间的相互作用,是增强胰岛功能的重要信号。脱细胞化ECM(dECM)可以重新创建各种ECM成分的组织特异性组合物,包括胶原蛋白、糖氨基甘油(GAG)和糖蛋白。例如,保留其周围E意象带的初级胰岛(例如,I型、III型、IV型、V型和VI型胶原蛋白、拉米宁和纤维素)表现出低细胞凋亡和更好的胰岛素敏感性,这表明组织特异性细胞-基质相互作用对于增强其与原始组织4类似的功能能力非常重要。

在本文中,我们阐明了制备胰腺组织衍生的去细胞外基质(pdECM)生物油墨的方案,为增强胰腺胰岛的活性和功能提供有益的微环境提示,然后使用基于微糊精的生物印刷技术生成3D胰腺组织结构的过程(图1)。

Protocol

猪胰腺组织是从当地的屠宰场收集的。动物实验得到了韩国首尔亚山医学中心机构动物护理和使用委员会(IACUC)的批准。 1. 组织去细胞化 准备脱细胞化的解决方案。注:所有溶液制剂中使用的1倍磷酸盐缓冲盐水(PBS)通过向10x PBS中加入蒸馏水稀释。 对于 1% Triton-X 100 溶液,使用磁搅拌棒在 150 rpm 下搅拌 6 小时,在 900 mL 的 1x PBS 中溶解 100 mL 的 100% Triton-X 10…

Representative Results

胰腺组织的去细胞化我们开发了制备 pdECM 生物墨水的工艺,以提供胰腺组织特定的微环境,以增强 3D 生物打印组织结构中的胰岛功能(图 2A)。脱细胞化过程后,97.3%的dsDNA被去除,胶原蛋白和GAG等代表性ECM成分与原生胰腺组织相比分别保持在1278.1%和96.9%(图2B)。 <p class="jove_content"…

Discussion

该协议描述了pdECM生物油墨的开发以及使用3D细胞打印技术构建3D胰腺组织结构。要概括3D工程组织构造中目标组织的微环境,生物油墨的选择至关重要。在以前的研究中,我们验证了组织特异性的dECM生物油墨有利于促进干细胞分化和增殖10。与合成聚合物相比,dECM可以作为一个有利于细胞的环境,因为组织特异性的组成和结构11。因此,在dECM中主要部件的高保?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项研究得到了韩国政府资助的国立研究基金会(NRF)的生物与医疗技术开发项目(2017M3A9C6032067)和”ICT康力创意计划”(IITP-2019-2011-1-00783)的支持。由IITP(信息与通信技术规划与评估研究所)监督。

Materials

Biological Safety Cabinets CRYSTE PURICUBE 1200
Deep Freezer Thermo Scientific Forma 957
Digital orbital shaker DAIHAN Scientific DH.WSO04010
Dry oven DAIHAN Scientific WON-155
Freeze dryer LABCONCO 7670540
Fridge SANSUNG CRFD-1141
Grater ABM 1415605793
Inverted Microscopes Leica DMi1
Microcentrifuge CRYSTE PURISPIN 17R
Microplate reader Thermo Fisher Scientific Multiskan GO
Mini centrifuge DAIHAN Scientific CF-5
Multi-Hotplate Stirrers DAIHAN Scientific SMHS-6
Nanodrop Thermo Fisher Scientific ND-LITE-PR
pH benchtop meter Thermo Fisher Scientific STARA2110
Rheometer TA Instrument Discovery HR-2
Vortex Mixer DAIHAN Scientific VM-10
Cirurgical Instruments
Operating Scissors Hirose HC.13-122
Forcep Korea Ace Scientific HC.203-30
Materials
1.7 mL microcentrifuge tube Axygen MCT-175-C
10 ml glass vial Scilab SL.VI1243
40 µm cell strainer Falcon 352340
5 L beaker Dong Sung Science SDS 2400
50 mL cornical tube Falcon 352070
500 mL beaker Korea Ace Scientific KA.23-08
500 mL bottle-top vacuum filter Corning 431118
500 mL plastic container LOCK&LOCK INL301
96well plate Falcon 353072
Aluminum foil DAEKYO
Kimwipe Kimtech
Magnetic bar Korea Ace Scientific BA.37110-0003
Mortar and pestle DAIHAN Scientific SC.MG100
Multi-channel pipettor Eppendorf 4982000314
Petri Dish SPL 10100
pH indicator strips Sigma-Aldrich 1095350001
Sieve filter mesh DAIHAN Scientific
Decellularization
10x pbs Hyclone SH30258.01
4.7% Peracetic acid Omegafarm
70% ethanol SAMCHUN CHEMICALS E0220 SAM
Distilled water
IPA SAMCHUN CHEMICALS samchun I0348
Triton-X 100 Biosesang T1020
Biochemical assay
1,9-Dimethyl-Methylene Blue zinc chloride double salt Sigma-Aldrich 341088
10 N NaOH Biosesang S2018
Chloramine T Sigma-Aldrich 857319
Chondroitin sulfate A Sigma-Aldrich C4384
Citric acid Supelco 46933
Cysteine-HCl Sigma-Aldrich C1276
Glacial acetic acid Merok 100063
Glycine Sigma-Aldrich 410225
HCl Sigma-Aldrich H1758
Na2-EDTA Sigma-Aldrich E5134
NaCl SAMCHUN CHEMICALS S2097
Papain Sigma-Aldrich p4762
P-DAB Sigma-Aldrich D2004
Perchloric acid Sigma-Aldrich 311421
Sodium acetate Sigma-Aldrich S5636
Sodium hydroxide Supelco SX0607N
Sodium phosphate(monobasic) Sigma-Aldrich RDD007
Toluene Sigma-Aldrich 244511
Bioink
Charicterized FBS Hyclone SH30084.03
Penicillin-Streptomycin Thermo Fisher Scientific 15140122
Pepsin Sigma-Aldrich P7215
Rose bengal Sigma-Aldrich 198250
RPMI-1640 medium Thermo Fisher Scientific 11875093
Trypan Blue solution Sigma-Aldrich T8154

References

  1. Shapiro, A. J., Pokrywczynska, M., Ricordi, C. Clinical pancreatic islet transplantation. Nature Reviews Endocrinology. 13 (5), 268 (2017).
  2. Venturini, M., et al. Technique, complications, and therapeutic efficacy of percutaneous transplantation of human pancreatic islet cells in type 1 diabetes: the role of US. Radiology. 234 (2), 617-624 (2005).
  3. Xie, D., et al. Cytoprotection of PEG-modified adult porcine pancreatic islets for improved xenotransplantation. Biomaterials. 26 (4), 403-412 (2005).
  4. Sackett, S. D., et al. Extracellular matrix scaffold and hydrogel derived from decellularized and delipidized human pancreas. Scientific Reports. 8 (1), 10452 (2018).
  5. Kim, J., et al. 3D cell printing of islet-laden pancreatic tissue-derived extracellular matrix bioink constructs for enhancing pancreatic functions. Journal of Materials Chemistry B. 7 (10), 1773-1781 (2019).
  6. Yi, H. G., et al. A bioprinted human-glioblastoma-on-a-chip for the identification of patient-specific responses to chemoradiotherapy. Nature Biomedical Engineering. 1, (2019).
  7. Das, S., et al. Decellularized extracellular matrix bioinks and the external stimuli to enhance cardiac tissue development in vitro. Acta Biomaterialia. , (2019).
  8. Kim, H., et al. Shear-induced alignment of collagen fibrils using 3D cell printing for corneal stroma tissue engineering. Biofabrication. 11 (3), 035017 (2019).
  9. Huang, H. H., Ramachandran, K., Stehno-Bittel, L. A replacement for islet equivalents with improved reliability and validity. Acta Diabetologica. 50 (5), 687-696 (2013).
  10. Pati, F., et al. Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink. Nature Communications. 5, 3935 (2014).
  11. Hussey, G. S., Dziki, J. L., Badylak, S. F. Extracellular matrix-based materials for regenerative medicine. Nature Reviews Materials. 1, (2018).
  12. Kim, B. S., Kim, H., Gao, G., Jang, J., Cho, D. W. Decellularized extracellular matrix: a step towards the next generation source for bioink manufacturing. Biofabrication. 9 (3), 034104 (2017).
  13. Gaetani, R., et al. Evaluation of different decellularization protocols on the generation of pancreas-derived hydrogels. Tissue Engineering Part C: Methods. 24 (12), 697-708 (2018).
  14. Gao, G., et al. Tissue engineered bio-blood-vessels constructed using a tissue-specific bioink and 3D coaxial cell printing technique: a novel therapy for ischemic disease. Advanced Functional Materials. 27 (33), 1700798 (2017).
  15. La, W. G., et al. Systemically replicated organic and inorganic bony microenvironment for new bone formation generated by a 3D printing technology. RSC Advances. 6 (14), 11546-11553 (2016).
  16. Lee, H., et al. Development of liver decellularized extracellular matrix bioink for three-dimensional cell printing-based liver tissue engineering. Biomacromolecules. 18 (4), 1229-1237 (2017).
  17. Choudhury, D., Tun, H. W., Wang, T., Naing, M. W. Organ-derived decellularized extracellular matrix: a game changer for bioink manufacturing?. Trends in Biotechnology. 36 (8), 787-805 (2018).
  18. Kurpios, N. A., et al. The direction of gut looping is established by changes in the extracellular matrix and in cell: cell adhesion. Proceedings of the National Academy of Sciences. 105 (25), 8499-8506 (2008).
  19. Sakai, T., Larsen, M., Yamada, K. M. Fibronectin requirement in branching morphogenesis. Nature. 423 (6942), 876 (2003).
check_url/60434?article_type=t

Play Video

Cite This Article
Kim, J., Kim, M., Hwang, D. G., Shim, I. K., Kim, S. C., Jang, J. Pancreatic Tissue-Derived Extracellular Matrix Bioink for Printing 3D Cell-Laden Pancreatic Tissue Constructs. J. Vis. Exp. (154), e60434, doi:10.3791/60434 (2019).

View Video