Summary

基因表达的变化大鼠海马后,前丘脑核脑深部刺激分析

Published: March 08, 2015
doi:

Summary

The mechanism underlying the therapeutic effects of Deep Brain Stimulation (DBS) surgery needs investigation. The methods presented in this manuscript describe an experimental approach to examine the cellular events triggered by DBS by analyzing the gene expression profile of candidate genes that can facilitate neurogenesis post DBS surgery.

Abstract

深部脑刺激(DBS)的手术,靶向脑的各个区域,例如基底神经节,丘脑和丘脑底区域,是一种有效的治疗该未能对药物响应的几个运动障碍。在DBS外科领域的最新进展已经开始扩展这个手术技术的其他条件等不同的病态肥胖,抑郁症和强迫症的应用。尽管有这些迹象不断扩大,鲜为人知的是,潜在的生理机制,以促进DBS手术的有利影响。一种方法这个问题是在接受电刺激的神经元进行基因表达分析。以前的研究已经表明,神经发生在大鼠海马齿状回被引发在DBS丘脑1的前核的定位。 DBS手术针对ATN被广泛用于治疗难治性癫痫。因此,这是多大的INTERES吨为我们探索诱发电刺激ATN的转录变化。在这个手稿中,我们描述了立体定位引导下DBS手术针对ATN成年雄性Wistar大鼠我们的方法。我们还讨论了组织解剖,RNA分离,cDNA的制备和定量RT-PCR的随后步骤,用于测量基因表达的改变。这种方法可用于修改用于刺激基底节和脑的其它区域通常临床目标。这里所描述的基因表达研究假设的发现分子球员可以指挥机制DBS一个候选目标基因的方法。

Introduction

背后深部脑刺激的发展作为一个神经外科技术的历史可以追溯到19世纪70年代时的电刺激大脑电路的可能性进行了探讨2。采用慢性高频刺激作为治疗神经疾病始于20世纪60年代3。后来在上世纪90年代慢性植入电极DBS 4-6的来临,这是由DBS治疗神经疾病的人数不断增加。深部脑刺激,第一次在美国用作用于原发性震颤6的处理。今天的手术被广泛用于治疗神经元疾病是目前无法治疗由药物干预。 DBS是目前用于治疗帕金森氏病和肌张力障碍7-9的运动障碍。阿耳茨海默氏型痴呆,亨廷顿氏病,癫痫症,疼痛和神经精神疾病,例如抑郁症,强迫症,图雷特7综合症和成瘾是一些适合治疗由DBS 10-12的条件。而DBS手术是FDA批准的用于治疗帕金森氏症,肌张力障碍和原发性震颤,利用DBS用于治疗上面提到的其他条件都在实验室将提供很大希望给患者13,14的各个阶段和临床研究。

在临床上,DBS手术是在两个阶段中进行。使用放射性定位的组合的第一阶段包括通过外科手术定位DBS电极在所述靶向解剖结构的位置,CT,MRI以及微电极读数提高精度。第二阶段涉及植入在病人的胸部上的脉冲发生器和从头皮到脉冲发生器安装延伸引线。基于所述神经系统疾病,用于脉冲发生器编程几个方案已被标准化,并将被用来提供所需的电压。最终卷塔格达到以逐步的方式,以便接收与 ​​最小电压15的最好的临床响应。然而,在我们的研究中,不像慢性DBS植入物应用于临床,为简单起见,我们已采取在我们的动物模型研究的一次性高频刺激(1小时)。

我们组的研究的一部分集中在研究使用DBS手术治疗难治性癫痫。采用高频电刺激立体定向手术方法已探索了许多人作为一种有效的选择治疗构成约30%的癫痫10,16,17的各个发病的医学难治性癫痫。小脑刺激靶向皮质表面以及深层小脑核已经使用在过去作为目标,以治疗癫痫10,18,19。此外,海马的刺激也已试过,但用不同的结果20,21。一些其它的研究DBS目标癫痫包括大脑皮质,丘脑,丘脑下核和迷走神经8。然而,从在过去的几年中的几项研究,结果如下,前丘脑核(ATN)已经成为最常见的DBS目标为癫痫的治疗10,22。建立在有关神经解剖学电路和从动物模型的研究结果,一些研究已经在治疗癫痫23-26集中的ATN的深部脑刺激的治疗效果。使ATN是边缘电路的一部分,并位于影响发作频率的大脑区域。所学专业哈马尼等人 ,已经测试ATN-DBS的疗效在毛果芸香碱诱发癫痫模型,发现双侧ATN刺激潜伏期延长的毛果芸香碱诱发的癫痫发作和癫痫持续状态24。此外,ATN的高频刺激发现,以减少在戊四氮(PTZ)模型EP的发作频率ilepsy 25,27-29。 Lee 等人 ,已经报道经ATN慢性脑深部刺激的平均降低发作频率由约75%在治疗顽固性部分癫痫30。

在治疗难治性癫痫最近的临床研究表明DBS手术后有希望的结果针对前丘脑核(ATN)22。多中心的随机临床试验110例患者接受了ATN的双边DBS治疗难治性癫痫(SANTE试行)表示癫痫发作频率下降了约40%31。从本研究的结果还暗示上在2-3个月后的手术观察延迟最优抗癫痫作用。户田等人的进一步研究。,证实与这些发现,他们表现出神经发生发生在稍后的时间交 ​​的DBS(3-5天)在动物模型1。此外,恩西纳斯。等,已经报道海马neurogene矽统后的ATN 32的高频刺激成年小鼠海马齿状回。以前的研究33-35报道下滑在某些情况下,癫痫海马神经发生,如慢性颞叶癫痫和学习赤字的关联,记忆障碍和自发的反复运动性发作。另外,还有在神经干细胞祖因素如FGF2和IGF-1中的动物模型33长期痫海马的降低。考虑到这一点,介入策略,如星展,显示神经发生在齿状回的增强是令人兴奋的途径进行研究。这些发现促使我们进一步深入探索到底层机制的神经发生后DBS治疗癫痫。我们有针对性的ATN单方面双方(未报告数据),以及双边(有代表性的结果),看到高架神经营养因子(BDNF)的表达在大鼠海马齿状回。我们的C光凭目前的假设是,BDNF表达启动基因表达的级联高潮在神经发生该转换为DBS手术的抗癫痫作用。在本文中,我们提出我们的方法DBS手术针对ATN大鼠其次是基因表达分析作为一个有吸引力的方法来研究DBS的好处背后的机制。

Protocol

注:伦理学声明:本稿件讨论的所有程序都是按照NIH指南动物研究(指南护理和使用实验动物)和哈佛医学院IACUC委员会的批准。 1.预外科制备确保所有的手术器械是由任一高压灭菌或通过用消毒液和/或乙醇作为必要清洁消毒。如果可能的话,使用一次性无菌设备,如手术刀,针头和注射器。 覆盖手术单工作台,并确保有一个生物危险废物处置可供。 ?…

Representative Results

图1A和1B示出BDNF和GABRD相对于对照基因β肌动蛋白的相对表达。 BDNF,神经营养蛋白经常与在许多神经元疾病38-41神经保护作用相关联。因此,有趣的分析响应于它产生于癫痫患者的治疗益处的ATN刺激BDNF的表达谱。在图1A中示出了其中的BDNF横跨指示时间点的基因表达图谱发表的DBS刺激,BDNF上调立即(0小时)的DBS手术后第3小时观察到随着峰值表达式(3?…

Discussion

继Benabid 具有里程碑意义的工作用脑深部电刺激治疗帕金森氏病和特发性震颤,在DBS手术技术已经研究了很大的兴趣在过去十年来治疗许多神经系统疾病6,10,43。针对大脑电路的各种神经解剖区域DBS的研究,许多团体正在执行,以解决主要的神经元​​疾病是临床试验的各个阶段。底丘脑核(STN)或苍白球(GPI)的内段的刺激被FDA批准并用于治疗运动障碍在帕金森氏病

Divulgations

The authors have nothing to disclose.

Acknowledgements

We are grateful for the support of the NREF foundation.

Materials

Deep Brain Stimulation Surgery
Reagent/Equipment Vendor Name Catalog No.  Comments
Stereotactic frame Kopf Instruments Model 900
Drill  Dremmel 7700, 7.2 V
Scalpel BD 372610
Ketamine Patterson Veterinary 07-803-6637 Schedule III Controlled Substance, procurement, use and storage according to institutional rules
Xylazine Patterson Veterinary 07-808-1947
Buprenorphine Patterson Veterinary 07-850-2280 Schedule III Controlled Substance, procurement, use and storage according to institutional rules
Surgical staples ConMed Corporation 8035
Sutures (3-0)  Harvard Apparatus 72-3333
Syringe (1 ml, 29 1/2 G) BD 329464 Sterile, use for Anesthesia administration intraperitoneally
Syringe (3 ml, 25 G) BD 309570 Sterile, use for Analgesia administration subcutaneously
Needles BD 305761 Sterile, use for clearing broken bone pieces from the burr holes
Ethanol Fisher Scientific S25309B Use for general sterilization 
Eye Lubricant Fisher Scientific 19-898-350
Stimulator Medtronic Model 3628
DBS electrodes Rhodes Medical Instruments, CA SNEX100x-100mm Electrodes are platinum, concentric and bipolar
Betadine (Povidone-Iodine)  PDI S23125 Single use swabsticks, use for sterilizing the scalp before making incision 
 Brain Dissection and Hippocampal tissue isolation
Reagent/Equipment Vendor Name Catalog No.  Comments
Acrylic Rodent Brain Matrix Electron Microscopy Sciences 175-300 www.emsdiasum.com
Razor Blade V W R 55411-050
Guillotine Scissors Clauss 18039 For decapitation, make sure these scissors are maintained in clean and working condition
Scissors Codman Classic 34-4098 Use for removing the brain from the skull
Forceps Electron Microscopy Sciences 72957-06 Use for removing the brain from the skull and for handling during dissection
Phosphate Buffered Saline  Boston Bioproducts BM-220
 RNA Extraction and cDNA Preparation
Reagent/Equipment Vendor Name Catalog No.  Comments
Tri Reagent Sigma T9424 Always use in a fume hood and wear protective goggles while handling; avoid contact with skin
Syringe (3 ml, 25 G) BD 309570 Use for tissue homogenization
Chloroform Fisher Scientific BP1145-1 Always use in a fume hood and wear protective goggles while handling; avoid contact with skin
Isopropanol Fisher Scientific A416-1
Glycogen Thermo Scientific R0561
Dnase I Kit Ambion AM1906
Superscript First Strand Synthesis Kit Invitrogen 11904-018
Tabletop Microcentrifuge Eppendorf 5415D
 Quantitative PCR               
Reagent/Equipment Vendor Name Catalog No.  Comments
SYBR Green PCR Kit Qiagen 204143
Custom Oligos Invitrogen 10668051
PCR Plates (96 wells) Denville Scientific C18080-10
Optical Adhesive Sheets Thermo Scientific AB1170
Nuclease free Water Thermo Scientific SH30538-02
Real Time PCR Machine Applied Biosystems 7500

References

  1. Toda, H., Hamani, C., Fawcett, A. P., Hutchison, W. D., Lozano, A. M. The regulation of adult rodent hippocampal neurogenesis by deep brain stimulation. Journal of. 108, 132-138 (2008).
  2. Perlmutter, J. S., Mink, J. W. Deep brain stimulation. Annual review of neuroscience. 29, 229-257 (2006).
  3. Bergstrom, M. R., Johansson, G. G., Laitinen, L. V., Sipponen, P. Electrical stimulation of the thalamic and subthalamic area in cerebral palsy. Acta physiologica Scandinavica. 67, 208-213 (1966).
  4. Benabid, A. L., et al. Chronic electrical stimulation of the ventralis intermedius nucleus of the thalamus as a treatment of movement disorders. Journal of neurosurgery. 84, 203-214 (1996).
  5. Benabid, A. L., et al. Long-term electrical inhibition of deep brain targets in movement disorders. Movement disorders : official journal of the Movement Disorder Society. 13, 119-125 (1998).
  6. Benabid, A. L., et al. Long-term suppression of tremor by chronic stimulation of the ventral intermediate thalamic nucleus. Lancet. 337, 403-406 (1991).
  7. Tierney, T. S., Lozano, A. M. Surgical treatment for secondary dystonia. Movement disorders : official journal of the Movement Disorder Society. 27, 1598-1605 (2012).
  8. Tierney, T. S., Sankar, T., Lozano, A. M. Some recent trends and further promising directions in functional neurosurgery. Acta neurochirurgica. Supplement. 117, 87-92 (2013).
  9. Tierney, T. S., Sankar, T., Lozano, A. M. Deep brain stimulation emerging indications. Progress in brain research. 194, 83-95 (2011).
  10. Sankar, T., Tierney, T. S., Hamani, C. Novel applications of deep brain stimulation. Surgical neurology international. 3, S26-S33 (2012).
  11. Tierney, T. S., Vasudeva, V. S., Weir, S., Hayes, M. T. Neuromodulation for neurodegenerative conditions. Frontiers in bioscience. 5, 490-499 (2013).
  12. Mayberg, H. S., et al. Deep brain stimulation for treatment-resistant depression. Neuron. 45, 651-660 (2005).
  13. Lyons, M. K. Deep brain stimulation: current and future clinical applications. Mayo Clinic proceedings. 86, 662-672 (2011).
  14. Lansek, R., Morris, M. E. Ch. 4. Rehabilitation in movement disorders. , 36-43 (2013).
  15. Goodwin, R., Tierney, T., Lenz, F., Anderson, W., Fried, I., Rutishauser, U., Cerf, M., Kreiman, G. Ch. 15. Single Neuron Studies of the Human Brain: Probing Cognition. 15, 275-293 (2014).
  16. Hauser, W. A. Epidemiology of epilepsy in children. Neurosurgery clinics of North America. 6, 419-429 (1995).
  17. Hauser, W. A. Recent developments in the epidemiology of epilepsy. Acta neurologica Scandinavica. Supplementum. 162, 17-21 (1995).
  18. Davis, R., Emmonds, S. E. Cerebellar stimulation for seizure control: 17-year study. Stereotactic and functional neurosurgery. 58, 200-208 (1992).
  19. Levy, L. F., Auchterlonie, W. C. Chronic cerebellar stimulation in the treatment of epilepsy. Epilepsia. 20, 235-245 (1979).
  20. Velasco, A. L., et al. Electrical stimulation of the hippocampal epileptic foci for seizure control: a double-blind, long-term follow-up study. Epilepsia. 48, 1895-1903 (2007).
  21. Tellez-Zenteno, J. F., McLachlan, R. S., Parrent, A., Kubu, C. S., Wiebe, S. Hippocampal electrical stimulation in mesial temporal lobe epilepsy. Neurology. 66, 1490-1494 (2006).
  22. Kerrigan, J. F., et al. Electrical stimulation of the anterior nucleus of the thalamus for the treatment of intractable epilepsy. Epilepsia. 45, 346-354 (2004).
  23. Hamani, C., et al. Deep brain stimulation of the anterior nucleus of the thalamus: effects of electrical stimulation on pilocarpine-induced seizures and status epilepticus. Epilepsy research. 78, 117-123 (2008).
  24. Hamani, C., et al. Bilateral anterior thalamic nucleus lesions and high-frequency stimulation are protective against pilocarpine-induced seizures and status epilepticus. Neurosurgery. 54, 191-195 (2004).
  25. Mirski, M. A., Rossell, L. A., Terry, J. B., Fisher, R. S. Anticonvulsant effect of anterior thalamic high frequency electrical stimulation in the rat. Epilepsy research. 28, 89-100 (1997).
  26. Mirski, M. A., Ferrendelli, J. A. Interruption of the mammillothalamic tract prevents seizures in guinea pigs. Science. 226, 72-74 (1984).
  27. Mirski, M. A., Ferrendelli, J. A. Anterior thalamic mediation of generalized pentylenetetrazol seizures. Brain research. 399, 212-223 (1986).
  28. Mirski, M. A., Ferrendelli, J. A. Interruption of the connections of the mammillary bodies protects against generalized pentylenetetrazol seizures in guinea pigs. The Journal of neuroscience : the official journal of the Society for Neuroscience. 7, 662-670 (1987).
  29. Mirski, M. A., McKeon, A. C., Ferrendelli, J. A. Anterior thalamus and substantia nigra: two distinct structures mediating experimental generalized seizures. Brain research. 397, 377-380 (1986).
  30. Lee, K. J., Jang, K. S., Shon, Y. M. Chronic deep brain stimulation of subthalamic and anterior thalamic nuclei for controlling refractory partial epilepsy. Acta neurochirurgica. Supplement. 99, 87-91 (2006).
  31. Fisher, R., et al. Electrical stimulation of the anterior nucleus of thalamus for treatment of refractory epilepsy. Epilepsia. 51, 899-908 (2010).
  32. Encinas, J. M., Hamani, C., Lozano, A. M., Enikolopov, G. Neurogenic hippocampal targets of deep brain stimulation. The Journal of comparative neurology. 519, 6-20 (2011).
  33. Hattiangady, B., Rao, M. S., Shetty, A. K. Chronic temporal lobe epilepsy is associated with severely declined dentate neurogenesis in the adult hippocampus. Neurobiology of disease. 17, 473-490 (2004).
  34. Kuruba, R., Hattiangady, B., Shetty, A. K. Hippocampal neurogenesis and neural stem cells in temporal lobe epilepsy. Epilepsy & behavior : E&B. 14, 65-73 (2009).
  35. Hattiangady, B., Shetty, A. K. Implications of decreased hippocampal neurogenesis in chronic temporal lobe epilepsy. Epilepsia. 49, 26-41 (2008).
  36. Paxinos, G., Watson, C. . The Rat Brain in Stereotaxic Coordinates. , (2007).
  37. Livak, K. J., Schmittgen, T. D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 22DDCT Method. METHODS. 25, 402-408 (2001).
  38. Kells, A. P., et al. AAV-mediated gene delivery of BDNF or GDNF is neuroprotective in a model of Huntington disease. Molecular therapy : the journal of the American Society of Gene Therapy. 9, 682-688 (2004).
  39. Han, B. H., Holtzman, D. M. BDNF protects the neonatal brain from hypoxic-ischemic injury in vivo via the ERK pathway. The Journal of neuroscience : the official journal of the Society for Neuroscience. 20, 5775-5781 (2000).
  40. Hetman, M., Kanning, K., Cavanaugh, J. E., Xia, Z. Neuroprotection by brain-derived neurotrophic factor is mediated by extracellular signal-regulated kinase and phosphatidylinositol 3-kinase. The Journal of biological chemistry. 274, 22569-22580 (1999).
  41. Stadelmann, C., et al. BDNF and gp145trkB in multiple sclerosis brain lesions: neuroprotective interactions between immune and neuronal cells. Brain : a journal of neurology. 125, 75-85 (2002).
  42. Treiman, D. M. GABAergic mechanisms in epilepsy. Epilepsia. 42, 8-12 (2001).
  43. Benabid, A. L., Pollak, P., Louveau, A., Henry, S., de Rougemont, J. Combined (thalamotomy and stimulation) stereotactic surgery of the VIM thalamic nucleus for bilateral Parkinson disease. Applied neurophysiology. 50, 344-346 (1987).
  44. Laxton, A. W., et al. A phase I trial of deep brain stimulation of memory circuits in Alzheimer’s disease. Annals of. 68, 521-534 (2010).
  45. Tierney, T. S., Abd-El-Barr, M. M., Stanford, A. D., Foote, K. D., Okun, M. S. Deep brain stimulation and ablation for obsessive compulsive disorder: evolution of contemporary indications, targets and techniques. The International journal of neuroscience. 124, 394-402 (2014).
  46. Kennedy, S. H., et al. Deep brain stimulation for treatment-resistant depression: follow-up after 3 to 6 years. The American journal of psychiatry. 168, 502-510 (2011).
  47. Lozano, A. M., et al. Subcallosal cingulate gyrus deep brain stimulation for treatment-resistant depression. Biological psychiatry. 64, 461-467 (2008).
  48. Ackermans, L., et al. Double-blind clinical trial of thalamic stimulation in patients with Tourette syndrome. Brain : a journal of neurology. 134, 832-844 (2011).
  49. Houeto, J. L., et al. Tourette’s syndrome and deep brain stimulation. Journal of neurology, neurosurgery, and psychiatry. 76, 992-995 (2005).
  50. Maciunas, R. J., et al. Prospective randomized double-blind trial of bilateral thalamic deep brain stimulation in adults with Tourette syndrome. Journal of neurosurgery. 107, 1004-1014 (2007).
  51. Koning, P. P., Figee, M., van den Munckhof, P., Schuurman, P. R., Denys, D. Current status of deep brain stimulation for obsessive-compulsive disorder: a clinical review of different targets. Current psychiatry reports. 13, 274-282 (2011).
  52. Greenberg, B. D., et al. Deep brain stimulation of the ventral internal capsule/ventral striatum for obsessive-compulsive disorder: worldwide experience. Molecular psychiatry. 15, 64-79 (2010).
  53. Muller, U. J., et al. Successful treatment of chronic resistant alcoholism by deep brain stimulation of nucleus accumbens: first experience with three cases. Pharmacopsychiatry. 42, 288-291 (2009).
  54. Zhou, H., Xu, J., Jiang, J. Deep brain stimulation of nucleus accumbens on heroin-seeking behaviors: a case report. Biological psychiatry. 69, e41-e42 (2011).
  55. Porta, M., et al. Thalamic deep brain stimulation for treatment-refractory Tourette syndrome: two-year outcome. Neurology. 73, 1375-1380 (2009).
  56. Younce, J. R., Albaugh, D. L., Shih, Y. Y. Deep brain stimulation with simultaneous FMRI in rodents. Journal of visualized experiments : JoVE. , e51271 (2014).
  57. Park, P. J. ChIP-seq: advantages and challenges of a maturing technology. Nature reviews. Genetics. 10, 669-680 (2009).
  58. Valouev, A., et al. Genome-wide analysis of transcription factor binding sites based on ChIP-Seq data. Nature methods. 5, 829-834 (2008).
  59. Fiore, R., Siegel, G., Schratt, G. MicroRNA function in neuronal development, plasticity and disease. Biochimica et biophysica acta. 1779, 471-478 (2008).
  60. Hebert, S. S., De Strooper, B. Alterations of the microRNA network cause neurodegenerative disease. Trends in neurosciences. 32, 199-206 (2009).
check_url/fr/52457?article_type=t

Play Video

Citer Cet Article
Selvakumar, T., Alavian, K. N., Tierney, T. Analysis of Gene Expression Changes in the Rat Hippocampus After Deep Brain Stimulation of the Anterior Thalamic Nucleus. J. Vis. Exp. (97), e52457, doi:10.3791/52457 (2015).

View Video