Summary

蛋白酶降解藻酸盐水凝胶和疏水性微生物反应器,用于猪卵母细胞封装

Published: July 30, 2020
doi:

Summary

此处介绍的两个协议用于在三生培养条件下封装猪卵母细胞。在第一种,积卵-卵母细胞复合物(COCs)封装在纤维蛋白-藻酸珠中。第二,它们被用氟化乙烯丙烯粉末颗粒(微生物反应器)封闭。两个系统都确保以最佳条件维护其 3D 组织。

Abstract

在生殖生物学方面,从人工授精和胚胎移植技术开始的生物技术革命导致辅助生殖技术的发展,如卵母细胞体外成熟(IVM)、体外受精(IVF)和通过从体细胞核转移克隆家畜。IVM 是特别重要的方法。它是为商业重要或濒危物种的生成间隔缩短、体外人类生殖研究以及细胞疗法的转基因动物生产等应用提供成熟、优质卵母细胞的平台技术。卵母细胞质量一词包括其完成成熟、受精的能力,从而产生健康的后代。这意味着优质卵母细胞对于成功受精至关重要,包括试管婴儿手术。这给开发一种可靠的培养方法带来了许多困难,这种方法不仅支持人类卵母细胞的生长,而且支持其他大型哺乳动物物种的生长。IVM 的第一步是卵母细胞的体外培养。本文描述了猪卵母细胞的3D培养的两个协议。在第一个,3D模型累积-卵母细胞复合物(COCs)封装在一个纤维蛋白-藻酸盐珠渗透网络中,其中纤维蛋白和藻酸盐的混合物同时凝胶化。在第二种材料中,COC悬浮在一滴介质中,用氟化乙烯丙烯(FEP;六氟丙烯和四氟乙烯的共聚物)粉末颗粒封装,形成定义为液体大理石(LM)的微生物反应器。两个 3D 系统都维护体外气态培养环境。他们还通过防止其扁平化和由此破坏间隙结来维护 COC 3D 组织,从而保持卵母细胞与周围卵泡细胞之间的功能关系。

Introduction

各种培养系统的发展,包括三维(3D)的培养系统,旨在为从卵泡分离的卵母细胞的生长和成熟提供最佳条件,即使在发育初期。这对辅助生殖技术(ART)非常重要,特别是鉴于癌症治疗后与不孕症作斗争的妇女越来越多。体外条件(IVM)卵母细胞的成熟已经是一种成熟的技术,主要用于体外胚胎生成,用于牲畜繁殖2。然而,在大多数哺乳动物物种中,即使能达到高成熟率的积卵-卵母细胞复合物(COCs)(范围60至90%),它们的发展能力仍然不足以满足需求。这是因为以这样的方式获得的受精卵的发展,甚至到囊肿阶段是低的,在转移到代孕动物后,其期限的生存能力降低。因此,有必要提高从接受IVM程序4的卵母细胞获得的胚胎的发育能力。因此,新的成熟介质5正在设计,并测试不同时期的体外培养6,77以及6补充各种生长因子和分子的培养媒体,8,9。

任何完整的 IVM 系统的第一步是为卵母细胞在体外培养期间的可持续生长创造最佳条件。卵母细胞生长是卵母细胞恢复卵母细胞能力的具体指标,。此外,适当的体外培养系统必须能够支持其核成熟和细胞质分化12。积卵-卵母细胞复合物的形态是 ART 诊所使用的另一个重要指标,用于选择最佳卵母细胞,用于人类和牲畜12、13的体外受精 (IVF) 程序的后续步骤。考虑的COC的形态特征包括:卵母细胞直径、细胞质造粒和第一极体完整性14、15。14,此外,卵母细胞的发育潜力与积细胞的外观和压实及其围绕卵母细胞的层数相关。对于适当的卵母细胞体外培养系统来说,非常重要的也是维持卵母细胞-累积细胞的适当相互作用和细胞骨架稳定性16、17、18、19。16,17,18,19到目前为止,在人体体外卵母细胞生长的人类COC中已经证明20。使用牛科动物也导致活产。这些从不成熟的卵巢卵泡分离,然后培养14天,直到卵母细胞足够大,接受IVF程序21。类似地,从大猩猩蚁卵泡中分离出的COCs,在体外培养后受IVM影响,产生能够重新形成卵母细胞的卵母细胞,以正常出现的主轴结构22。元相II阶段。然而,在这项研究中,作者并没有试图给他们施肥。然而,这些结果表明,类似的程序不仅可应用于这些特定的哺乳动物物种,而且也适用于从卵泡中获得的人类积云-卵母细胞复合物,这些复合物应能获得适合成功的IVF技术的优质卵母细胞。

上述结果通过应用传统的IVM协议获得,在二维(2D)系统中培养卵母细胞。2D培养系统中的常规程序是覆盖卵母细胞,浸入一滴适当的培养介质中,与矿物油23,24。23,24假定体外卵母细胞培养期间的油覆盖有助于防止液体蒸发,从而确保培养物中适当的pH值和渗透压力的维持。虽然这种2D培养系统允许获得,甚至高达87%的成熟猪卵母细胞25,已经证明,矿物油覆盖导致脂质可溶性材料的实质性扩散,这是适当的卵母细胞发展所必需的26。此外,由于类固醇(黄体酮和雌激素)在卵母细胞培养期间扩散到矿物油中,观察到核成熟延迟和猪卵母细胞发育能力成就下降。这可能导致获得少量的酶,此外,其特点是发育能力低到囊肿阶段,并转移到接受动物27后生存能力差。因此,正在尝试通过创造最佳条件,实现与CC一起培养的卵母细胞作为复合物,特别是使用三维(3D)系统,提高从IVM程序后接收的卵母细胞衍生的胚胎的发育能力。各种创新的3D体外培养系统已经发展,近二十年来,28,29。,29这些旨在保持细胞的自然空间组织,并避免它们在培养皿中扁平化,这是传统2D培养中无法实现的。养殖COC的结构和功能活动可以通过维护其适当的架构和不受干扰的沟通,通过各种隔间之间的间隙结30,可以确保其结构和功能活动。生物支架对于3D细胞复合物体外培养的适宜性已经使用天然生物材料进行了评估,如细胞外基质(ECM;胶原蛋白和透明质酸)的各种成分(ECM;胶原蛋白和透明质酸)31或惰性聚合物(藻酸盐)32。这些尝试在几个物种的测试带来了有希望的结果,在卵母细胞梅病恢复和实现他们的完全能力33,34,35。33,34,35然而,到目前为止,还没有开发适合从大型家畜(包括猪)分离出的COC成熟3D系统。

本文描述了可用于猪 COC 的 3D 培养的两种协议。第一个协议描述了纤维蛋白-藻酸盐珠(FAB)中的封装。FAB 可以通过同时混合藻酸盐和纤维蛋白溶液而形成,这种溶液经过同步凝胶过程。这种组合提供了一个动态的机械环境,因为两个组件都有助于矩阵刚度。类似的解决方案以前也用于小鼠卵巢卵泡培养和成熟36。在所提出的协议中,为了避免藻酸纤维蛋白网络过早降解,使用适当浓度更高的氯化钙溶液,确保快速稳定的凝胶过程。动态机械环境在 COC 驻留和尺寸增加的自然卵泡环境中创造了类似这样的条件。此外,该作品还展示了COC 3D培养系统的代表性结果,其中这些培养系统悬浮在一滴介质中,并用氟化乙烯丙烯(FEP;六氟丙烯和四氟乙烯的共聚物)粉末颗粒封装,形成微生物反应器(液体大理石、LM)。LM是一种3D生物反应器,以前已经证明支持活微生物37,肿瘤球类38和 胚胎干细胞39的生长。LMs也已成功用于羊卵母细胞培养40。在大多数使用LMs的实验中,生物反应器是使用粒径为1μm41的聚四氟乙烯(PTFE)粉床制备的。提出的协议使用FEP,其成分和性质与氟聚合物PTFE非常相似。但FEP比PTFE更容易形成和柔软,尤其重要的是,它是高度透明的。

两个 3D 系统都维护体外气态培养环境。他们还通过防止其扁平化和由此破坏间隙结,保持卵母细胞和周围卵泡细胞之间的功能关系,来维持COC 3D组织。

Protocol

下列程序由贾吉洛尼亚大学动物学和生物医学研究所的动物福利委员会批准。 1. 猪积细胞-卵母细胞复合物的分离 为了收集分离卵巢卵泡的材料,在当地屠宰场从预骨基座(约6-7个月大,体重70至80公斤)中切除猪卵巢。在每个实验中从 10 种动物中选择大约 20 个猪卵巢进行 COC 隔离。注:假设每个卵巢产生3~5个卵泡,卵泡总数从60到100个。 将卵巢放在含有1…

Representative Results

在使用两种IVM系统的COC中,格兰努洛萨细胞相互紧密地粘附在一起,大多数回收的COC有完整的积液层(图1A,B)。此外,还保留了相当一部分积血细胞。 从COC可行性分析中获得的结果证实,两个系统应用于在体外条件下3D中封装猪卵母细胞,确保了最佳生长条件(图2)。在这两组中,只观察到高活力卵母细胞,V1 = 13%?…

Discussion

能够保持体外生长的卵母细胞,但也在其周围的积细胞,同时支持其成熟是极其必要的成功的辅助生殖技术,并促进对体细胞/卵母细胞相互作用的理解,特别是在物种,如人类或猪。不断改进的IVM技术正在成为在多囊卵巢综合征(PCOS)、卵巢过早衰竭或最终不育(肿瘤治疗)的情况下保留生殖选择的重要工具。此外,由于某些卵巢功能障碍可能是由调节性卵泡生长不良引起的,了解控制卵母细?…

Offenlegungen

The authors have nothing to disclose.

Acknowledgements

作者非常感谢:Waclaw Twozydlo博士(贾吉洛尼亚大学动物学和生物医学研究所发育生物学和无脊椎动物形态学系)在TEM的技术设施;Beata Snakowska女士(贾吉洛尼亚大学动物学和生物医学研究所内分泌学系)提供技术援助;到日本济隆大学动物学和生物医学研究所细胞生物学和成像系,JEOL JEM 2100HT(日本东京,日本 JEOL)。波兰国家科学中心2018/29/N/NZ9/00983赠款支持这项工作。

Materials

General
Antibiotic Antimycotic (100x) 100ml Thermo Fisher 15240062 2.5% final concentration for Handling Medium. 1% in PBS (step 1.2)
DMEM/F12 (500ml) Sigma-Aldrich D8062 Handling and Maturation Medium
DPBS (w/o Ca, Mg), 1x, 500ml Thermo Fisher 14190144
FCS (100 ml) Thermo Fisher 16140063 10% final concentration for both Handling Medium and Maturation Medium. (steps: 1.5. 2.6.)
PBS (1x, pH 7.4) 500ml Thermo Fisher 10010023
TBS Stock Solution (10x, pH 7.4) 500 ml Cayman Chemicals 600232 1x final concentration. Other brand can be use
Maturation Medium
hCG (1 VIAL of 10 000 U) Sigma-Aldrich CG10
PMSG BioVendor RP1782721000
Fibrin-alginate beads
Alginate Lyase Sigma-Aldrich A1603 (Step 2.11.1)
Thrombin Sigma-Aldrich T9326-150UN (Step 2.1)
Calcium Chloride Sigma-Aldrich C5670 (Step 2.1)
Fibrinogen (250mg) Sigma-Aldrich F3879 (Step 2.2)
Sodium Alginate Sigma-Aldrich W201502 (Step 2.3) use for alginate solution
Liquid Marble
FEP Dyneon GmbH 3M AdMD A-66670
Morphological examination
LIVE/DEAD Viability/Cytotoxicity Kit, for mammalian cells Thermo Fisher L3224 (Step 4.1.) Emitted fluorescence: 494 nm for calcein, 528 nm for EthD-1; measure: 517 nm for calcein, 617 nm – EthD-1
VECTASHIELD Antifade Mounting Medium Vector Laboratories H-1000 mounting medium
Ultrastructure examination
Glutaraldehyde solution Sigma-Aldrich G5882 2.5% final concentraion (Step 4.2.1.)
LR White resin Sigma-Aldrich L9774 (Step 4.2.4.)
Methylene blue Sigma-Aldrich M9140 (Step 4.2.5.)
Osmium Tetroxide Sigma-Aldrich O5500 (Step 4.2.3.)
Sodium cacodylate trihydrate Sigma-Aldrich C0250 Use for preparing 0.1M sodium cacodylate buffer (pH 7.2)
Uranyl Acetate POCH 868540111 (Step 4.2.4.)
Specific instruments, tools
30 mm Pteri dish TPP 93040
60 mm IVF Petri dish Falcon 353653
Ez-Grid Premium Cell Handling Pipettor RI Life Sciences 8-72-288
Ez-Tip RI Life Sciences 8-72-4155/20
Heating Table SEMIC Other brands can be used
Incubator Panasonic MCO-170AIC-PE Other brands can be used
Sterile petri dish (10 cm) NEST Biotechnology 704002
Sterile syringe filters with 0.2 µm GOOGLAB SCIENTIFIC GB-30-022PES
Thermos Quechua 5602589 Other brands can be used

Referenzen

  1. Jeruss, J. S., Woodruff, T. K. Preservation of fertility in patients with cancer. The New England Journal of Medicine. 360 (9), 902-911 (2009).
  2. Paramio, M. T., Izquierdo, D. Current status of in vitro embryo production in sheep and goats. Reproduction in Domestic Animals. 49 (4), 37-48 (2014).
  3. Gilchrist, R. B., Thompson, J. G. Oocyte maturation: emerging concepts and technologies to improve developmental potential in vitro. Theriogenology. 67 (1), 6-15 (2007).
  4. Nogueira, D., Sadeu, J. C., Montagut, J. In vitro oocyte maturation: current status. Seminars in Reproductive Medicine. 30 (3), 199-213 (2012).
  5. Farsi, M. M., Kamali, N., Pourghasem, M. Embryological aspects of oocyte in vitro maturation. International Journal of Molecular and Cellular Medicine. 2 (3), 99-109 (2013).
  6. You, J., et al. Treatment with the proteasome inhibitor MG132 during the end of oocyte maturation improves oocyte competence for development after fertilization in cattle. PLOS One. 7 (11), 48613 (2012).
  7. Donnay, I., et al. Effect of prematuration, meiosis activating sterol and enriched maturation medium on the nuclear maturation and competence to development of calf oocytes. Theriogenology. 62 (6), 1093-1107 (2004).
  8. Ledda, S., Bogliolo, L., Leoni, G., Calvia, P., Naitana, S. Influence of vasoactive intestinal peptide (VIP), atrial natriuretic peptide (ANP) and insulin-like growth factor-I (IGF-I) on in vitro maturation of prepubertal and adult sheep oocytes. Zygote. 4 (4), 343-348 (1996).
  9. Uhm, S. J., et al. Epidermal growth factor can be used in lieu of follicle-stimulating hormone for nuclear maturation of porcine oocytes in vitro. Theriogenology. 73 (8), 1024-1036 (2010).
  10. Fair, T., Hyttel, P., Greve, T. Bovine oocyte diameter in relation to maturational competence and transcriptional activity. Molecular Reproduction and Development. 42 (4), 437-442 (1995).
  11. Sirard, M. A. Follicle environment and quality of in vitro matured oocytes. Journal of Assisted Reproduction and Genetics. 28 (6), 483-488 (2011).
  12. Banwell, K. M., Thompson, J. G. In vitro maturation of Mammalian oocytes: outcomes and consequences. Seminars in Reproductive Medicine. 26 (2), 162-174 (2008).
  13. de Smedt, V., Crozet, N., Gall, L. Morphological and functional changes accompanying the acquisition of the meiotic competence in ovarian goat oocyte. Journal of Experimental Zoology. 269 (2), 128-139 (1994).
  14. Luca, X., et al. Relationship between antral follicular size, oocyte diameters and nuclear maturation of immature oocyte in pigs. Theriogenology. 58 (5), 870-885 (2002).
  15. Abeydeera, L. R. In vitro production of embryo in swine. Theriogenology. 57 (1), 256-273 (2002).
  16. Carabatsos, M. J., Sellitto, C., Goodenough, D. A., Albertini, D. F. Oocyte-granulosa cell heterologous gap junctions are required for the coordination of nuclear and cytoplasmic meiotic competence. Entwicklungsbiologie. 226 (2), 167-179 (2000).
  17. Hashimoto, S., et al. Effects of cumulus cell density during in vitro maturation of the developmental competence of bovine oocytes. Theriogenology. 49 (8), 1451-1463 (1998).
  18. Zuccotti, M., Merico, V., Cecconi, S., Redi, C. A., Garagna, S. What does it take to make a developmentally competent mammalian egg. Human Reproduction Update. 17 (4), 525-540 (2011).
  19. Albertini, D. F., Barrett, S. L. Oocyte-somatic cell communication. Reproduction. Supplement. 61, 49-54 (2003).
  20. Cavilla, J. L., Kennedy, C. R., Byskov, A. G., Hartshorne, G. M. Human immature oocytes grow during culture for IVM. Human Reproduction. 23 (1), 37-45 (2008).
  21. Hirao, Y., et al. In vitro growth and development of bovine oocyte-granulosa cell complexes on the flat substratum: effects of high polyvinylpyrrolidone concentration in culture medium. Biology of Reproduction. 70 (1), 83-91 (2004).
  22. Xu, M., et al. In vitro oocyte maturation and preantral follicle culture from the luteal-phase baboon ovary produce mature oocytes. Biology of Reproduction. 84 (4), 680-697 (2011).
  23. Ka, H., Sawai, K., Wang, W. H., Im, K. S., Niwa, K. Amino acids in maturation medium and presence of cumulus cells at fertilization promote male pronuclear formation in porcine oocytes matured and penetrated in vitro. Biology of Reproduction. 57, 478-483 (1997).
  24. Shimada, M., Zeng, W. X., Terada, T. Inhibition of PI 3-kinase or MEK leads to suppression of p34cdc2 kinase activity and meiotic progression beyond the MI stage in porcine oocytes surrounded with cumulus cells. Biology of Reproduction. 65, 442-448 (2001).
  25. Coy, P., Romar, R. In vitro production of pig embryos: a point of view. Reproduction Fertility and Development. 14, 275-286 (2002).
  26. Reinsberg, J., Ackermann, D., Vander Ven, H. Pitfalls in assessment of progesterone production by granulosa cells cultured in contact with silicone rubber or paraffin oil. Archives Gynecology Obstetrics. 270, 174-178 (2004).
  27. Shimada, M., Kawano, N., Terada, T. Delay of nuclear maturation and reduction in developmental competence of pig oocytes after mineral oil overlay of in vitro maturation media. Reproduction. 124, 557-564 (2002).
  28. Cekleniak, N. A., et al. Novel system for in vitro maturation of human oocytes. Fertility and Sterility. 75, 1185-1193 (2001).
  29. Cukierman, E., Pankov, R., Yamada, K. M. Cell interactions with three-dimensional matrices. Current Opinion in Cell Biology. 14, 633-639 (2002).
  30. Desai, N., et al. Three-dimensional in vitro follicle growth: Overview of culture models, biomaterials, design parameters and future directions. Reproductive Biology and Endocrinology. 8 (119), (2010).
  31. Combelles, C. M., Fissore, R. A., Albertini, D. F., Racowsky, C. In vitro maturation of human oocytes and cumulus cells using a co-culture three-dimensional collagen gel system. Human Reproduction. 20, 1349-1358 (2005).
  32. Dorati, R., et al. Formulation and stability evaluation of 3D alginate beads potentially useful for cumulus-oocyte complexes culture. Journal of Microencapsulation. 33, 137-145 (2016).
  33. Morselli, M. G., Canziani, S., Vigo, D., Luvoni, G. C. A three-dimensional alginate system for in vitro culture of cumulus-denuded feline oocytes. Reproduction in Domestic Animals. 52 (1), 83-88 (2017).
  34. Pangas, S. A., Saudye, H., Shea, L. D., Woodruff, T. K. Novel approach for the three-dimensional culture of granulosa cell-oocyte complexes. Tissue Engineering. 9 (5), 1013-1021 (2003).
  35. Shen, P., et al. A new three-dimensional glass scaffold increases the in vitro maturation efficiency of buffalo (Bubalus bubalis) oocyte via remodeling the extracellular matrix and cell connection of cumulus cells. Reproduction in Domestic Animals. 55 (2), 170-180 (2020).
  36. Kniazeva, E., et al. Primordial follicle transplantation within designer biomaterial grafts produce live births in a mouse infertility model. Scientific Reports. 5, 17709 (2015).
  37. Tian, J., Fu, N., Chen, X. D., Shen, W. Respirable liquid marble for the cultivation of microorganisms. Colloids and Surfaces B Biointerfaces. 106, 187-190 (2013).
  38. Arbatan, T., Al-Abboodi, A., Sarvi, F., Chan, P. P., Shen, W. Tumor inside a pearl drop. Advanced Healthcare Materials. 1 (4), 467-469 (2012).
  39. Sarvi, F., et al. Cardiogenesis of embryonic stem cells with liquid marble micro-bioreactor. Advanced Healthcare Materials. 4 (1), 77-86 (2015).
  40. Ledda, S., et al. A novel technique for in vitro maturation of sheep oocytes in a liquid marble microbioreactor. Journal of Assisted Reproduction and Genetics. 33 (4), 513-518 (2016).
  41. Ooi, C. H., Nguyen, N. T. Manipulation of liquid marbles. Microfluid Nanofluid. 19, 483-495 (2015).
  42. Lin, P., Rui, R. Effects of follicular size and FSH on granulosa cell apoptosis and atresia in porcine antral follicles. Molecular Reproduction Development. 77 (8), 670-678 (2010).
  43. Eppig, J. J., O’Brien, M. J. Development in vitro of mouse oocytes from primordial follicles. Biology of Reproduction. 54 (1), 197-207 (1996).
  44. Dolmans, M. M., et al. Evaluation of Liberase, a purified enzyme blend, for the isolation of human primordial and primary ovarian follicles. Human Reproduction. 21 (2), 413-420 (2006).
  45. Reader, K. L., Stanton, J. A., Juenge, J. L. The role of oocyte organelles in determining developmental competence. Biologie. 6, 35-57 (2017).
  46. Shikanov, A., Xu, M., Woodruff, T. K., Shea, L. D. A method for ovarian follicle encapsulation and culture in a proteolytically degradable 3-dimensional system. Journal of Visualized Experiments. (49), e2695 (2011).
  47. Aussillous, P., Quere, D. Liquid Marbles. Nature. 411, 924-927 (2001).
  48. Serrano, M. C., Nardecchia, S., Gutiérrez, M. C., Ferrer, M. L., del Monte, F. Mammalian cell cryopreservation by using liquid marbles. ACS Applied Materials & Interfaces. 7, 3854-3860 (2015).
  49. Arbatan, T., Li, L., Tian, J., Shen, W. Liquid marbles as micro-bioreactors for rapid blood typing. Advance Healthcare Materials. 1 (1), 80-83 (2012).
  50. Brevini, T. A. L., Manzoni, E. F. M., Ledda, S., Gandolfi, F., Turksen, K. Use of a Super-hydrophobic Microbioreactor to Generate and Boost Pancreatic Mini Organoids. Organoids. Methods in Molecular Biology. , 291-299 (2017).
check_url/de/61325?article_type=t

Play Video

Diesen Artikel zitieren
Gorczyca, G., Wartalski, K., Tabarowski, Z., Duda, M. Proteolytically Degraded Alginate Hydrogels and Hydrophobic Microbioreactors for Porcine Oocyte Encapsulation. J. Vis. Exp. (161), e61325, doi:10.3791/61325 (2020).

View Video